Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords – signs of warming induced maturing of high latitude fjordic systems?

Agata Zaborska, Maria Włodarska-Kowalczuk, Joanna Legeżyńska, Aleksandra Winogradow, Emilia Jankowska, Kajetan Deja

Manuskrypt złożony w redakcji Journal of Marine Systems Special Issue "Ecology of Northern Fjords" ed. Torstein Pedersen w lutym 2016

HYPOTHESIS:

Warming will induce maturing of high latitude fjords in terms of organic matter biological mineralization and burial in sediments.

Mature ecosystems sequester little organic carbon (Corg) in sediments as the complex and effective food webs consume most of available organic matter within the water column and sediment, in contrast to young systems, where large proportion of Corg is buried in deeper sediment layers (e.g. Odum 1969).

AIMS/SCIENTIFIC QUESTIONS:

- Do sedimentary Corg pool and sources, accumulation rate in sediments differ between the fjords?
- Do the differences in sedimentary Corg characteristics (benthic food quantity and quality) effect the macrobenthic communities (composition, diversity, standing stocks, carbon demand)?
- Is the carbon burial lower in a warmer fjord?

SAMPLING STATIONS

SPM and sediments

Kongsfjord 🛏

Hornsund 📖

Sedimentary OM sources

• Hornsund Kongsfjord **END-MEMBERS METOD**

KGF - 20-40% C_{org} – terrestrial origin HSD - 50-70% C_{org} - terrestrial origin

Sedimentary OM sources

Sedimentary OM sources

MIXSIAR modelling tundra HRS (18-33%) >KGF (1-20%)

BAYESIAN METHOD

macroalgal detritus KGF (15-87 %) >HRS (15-61 %)

Macrozoobenthos – diversity, standing stocks

Macrozoobenthos - composition

Macrozoobenthos – carbon demand

Sediment and C_{org} accumulation rate

KONGSFJORD

HORNSUND

Corg a	ccumu	lation	rate (g	gC m ² y	year ⁻¹)
0	10	20	30	40	50
2015					
1995 -					
1055				5	
1975-				Y	
1955-					
1935-					

1015

	Station	LAR (cm year ⁻¹)	MAR (kg m ⁻² year ⁻¹)
	HG1	0.24±0.02	2.9±0.6
	HG2	0.23 ± 0.02	3.3±0.6
. -1	HG3	0.22 ± 0.03	2.9±0.6
5	K G1	0.38 ± 0.04	5.4±0.5
	K G2	0.41 ± 0.05	6.3±0.6
	K G3	0.40 ± 0.06	6.1±0.6

Organic Carbon Burial

Organic carbon burial in deeper sediments (<20cm depth): (MAR * Corg in 20-22cm)

```
Kongsfjord - 15.4 to 15.9 g m<sup>-2</sup> y<sup>-1</sup>
Hornsund - 35.5 to 38.6 g m<sup>-2</sup> y<sup>-1</sup>
```

% of C_{org} reaching the bottom buried in the deeper layers

Kongsfjord 45-53% Hornsund 84-92%

warming of the high latitude fjordic environments may induce maturing of the sea bottom systems, in terms of development of stable, biologically accommodated benthic communities more efficiently mineralizing organic matter and consequent lower sequestration of organic matter in deeper sediments.