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Abstract

The impact of ship traffic emissions in the Baltic Sea on deposition and airborne
concentrations of nitrogen and sulphur compounds in the period 2008–2011 was
studied using the Hilatar chemistry transport model with a 0.068◦ latitude-
longitude resolution. An accurate ship emission inventory based on AIS (automatic
identification system) security signals was used. The uncertainty of the European
emission inventories are discussed, as is an inter-comparison of the Baltic Sea
airborne load and concentrations with other model-based estimates and with air
quality measurements and the effect of the EU sulphur directive for ship emissions
on sulphate concentrations.

* The research has received funding from the European Regional Development Fund,
Central Baltic INTERREG IVA programme within the SNOOP project.

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/
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1. Introduction

The state of the Baltic Sea (BS) has been of widespread concern due

to the human impact on its ecosystems. The vertical stratification of

temperature and salinity of the water column in most sub-basins the whole

year round and the low level of water exchange with the Atlantic Ocean

make it very vulnerable to external pressures (BACC 2008). Its ecological

state and biodiversity are threatened by eutrophication caused by excessive

nutrient inputs, by direct pollution, by increasing ship traffic causing illegal

spills and increased risk of accidents, by climate change and by direct human

actions including overfishing and over-exploitation.

The Baltic Sea is situated between continental and marine climatic zones

with the sources of most of the atmospheric nitrogen emissions located in the

south. The atmospheric nitrogen and sulphur loads show a high inter-annual

and geographical variation with both east-west and north-south gradients.

Although the atmospheric load of inorganic nitrogen (N) is only around

31% of the waterborne load of N (HELCOM 2011), it is estimated to be

completely bioavailable whereas the fluvial load is not: for example, in

Danish waters the bioavailable total nitrogen (TN) fraction varied between

0.25 and 0.8 in winter (January–February) (Carstensen & Henriksen 2009).

The measured and modelled atmospheric load of nitrogen to the BS is

reported annually to HELCOM by the EMEP (Co-operative programme

for monitoring and evaluation of long-range transmission of air pollutants

in Europe) western and eastern centres and by NILU (Norsk institutt for

luftforskning) (Bartnicki et al. 2002–2012). In addition, several Nordic and

European air pollutant modelling and measurement groups have studied the

composition and flux of atmospheric contaminants to the BS (e.g. Schulz

et al. 1999, Plate 2000, Hertel et al. 2003, Hongisto & Joffre 2005, Rolff

et al. 2008, Langner et al. 2009, Geels et al. 2011).

The BS TN load decreased from 230 kt N in 1995 to 199 kt in 2006

(Bartnicki et al. 2011), but it again exceeded 210 kt in 2008 and 218

kt N in 2010 (Svendsen et al. 2013). The inter-annual variation, ranging

from −13 to 17% of the average value, was mainly caused by changing

meteorological conditions. The influence of meteorological variability on

nitrogen deposition was one of the main goals of the studies of Hongisto

& Joffre (2005) and Hongisto (2005, 2011 and 2012). The accumulated

deposition was found to be affected by the large-scale circulation type, which

determines the main seasonal wind direction with respect to the source

areas, the severity of the ice winter, the latitude of the cyclone paths and

their frequency of occurrence, the accumulated precipitation, the strength

of turbulence and the number of episodes.
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The ECOSUPPORT project showed long-term estimates of the past and
future development of the Baltic Sea, its external forcing and the ecosystem
responses. Those results were published in autumn 2012 in AMBIO 41.
Ruoho-Airola et al. (2012) compiled a consistent basin-wise monthly time
series of the atmospheric nutrient load to the BS for the period 1850–2006.
The modelling part was based mainly on EMEP simulations, but the authors
also discovered a wonderful treasure trove of historical measurements.
Models often underestimate the measured wet deposition of nitrogen to

the BS as deduced from all model measurement inter-comparison results
reported by EMEP annually since 1997. The actual flux of all airborne
contaminants to the BS is higher than the measured deposition because
the EMEP collectors do not have a wind shield and the dry deposition
is not measured. Although the collection efficiency of the rain-collecting
instruments situated at windy, coastal sites is rather poor, the measured
rain is used as such in flux calculations, presented in units of mass per m−2.
The organic nitrogen deposition, which according to Neff et al. (2002)
is around a third of the total N load, is not monitored by EMEP. The
organic nitrogen might be bioavailable if it disintegrated in water, hence
it should be taken into account in eutrophication studies. In estimating
the net atmospheric flux to sea areas one should note that in the 1990s
many fluxes (CO2, NH3) over the sea surface were found to be bidirectional
and that deposition should be estimated by a coupled marine-atmospheric
model.

The effects of European international shipping on the basis of country-
by-country deposition and ozone concentrations have been studied in Jonson
et al. (2000). Deposition to the BS caused by European countries and sea
traffic is reported annually in EMEP source-receptor matrices.

A review of existing studies on the impacts of shipping emissions of
different chemical compounds on air quality in coastal areas is presented
and discussed in detail in EEA (2013), along with a summary of the results
over the area considered, methodological data and conclusions.

2. Methods and model description

The nitrogen deposition to the BS was calculated with the Hilatar
chemistry-transport model (Hongisto 2003). As input, the model uses the
forecasts of the FMI operative HIRLAM hydrostatic weather prediction
model (HIgh Resolution Limited Area Model, Unden et al. 2002).
The Hilatar, a dynamic Eulerian model covering Europe with a zooming

model over the Baltic Sea and its close surroundings (the BS model
with 0.068 deg resolution), provides gridded estimates of the fluxes and
concentrations of oxidised and reduced nitrogen and sulphur compounds.
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Gaseous (g) and particle (p) concentrations are calculated for the following
substances: NOx(g), HNO3(g), NO3(p), PAN(g), NH4NO3(p), NH3(g),
SO2(g), SO4(p) and (NH4)1.5SO4(p), where PAN is peroxyacetyl nitrate
and NOx = NO+NO2. The chemistry module comprises the EMEP-MSC-
W chemistry code (Iversen et al. 1989) with some modifications (Hongisto
2003). The model does not have ozone as a variable, because in photo-
oxidant codes the main radical concentrations influencing the chemical
transformation of nitrogen and sulphur chemistry are calculated inside the
model. Their values are, however, rather seldom verified or even presented.
For basic acid chemistry one can use measurement-based functions for all
radicals and oxidants needed.

The Hilatar model, run since 1993, has the HIRLAM grid of the current
operative model: horizontally rotated spherical coordinates and vertically
hybrid sigma coordinates with selected (now 21) layers up to 5–10 km in
height. The long-range transported compounds at the borders of the BS
model domain, calculated by the 0.15◦ resolution European-scale model,
are included in the advected air with six hour intervals. For the years 2008–
2011, both models used the HIRLAM version V71 vertical grid; from the
60 available vertical levels the 18 lowest (up to around 1.5 km) and three
additional levels (at around 2 km, 2.8 km and 5.1–5.3 km) are used.

In Hilatar, horizontal advection is solved numerically according to Bott’s
(1989) method, while chemistry uses the Hesstvedt et al. (1978) algorithm,
and vertical diffusion the Tuovinen (1992) algorithm. The time resolution
depends on the algorithm and grid resolution, being 56.25 s for all algorithms
in the BS model. The dry deposition velocities, used as the lower boundary
condition of the vertical diffusion equation, were calculated by resistance
analogy. The Lindfors et al. (1991) method was used for calculating
the marine atmospheric boundary layer (MABL) parameters for the dry
deposition velocities over sea areas. The scavenging rates are based on e.g.
the work of Chang (1984, 1986), Scott (1982), Jonsen & Berge (1995) and
Asman & Janssen (1987).

3. Emissions

For the European simulations the models use both the EMEP WebDab
and the MACC (2011) emission inventories, as well as the FMI inventory
for Finnish and north-western Russian sources. The BS model also uses
a specific Baltic Sea ship emission inventory (Stipa et al. 2007, Jalkanen
et al. 2009, 2012) and Finnish national stack and areal emissions. The time
variation for other than ship emissions is based on the GENEMIS project
1990 country-specific emissions and on the diurnal and weekly traffic indices.
The initial vertical mixing was estimated by using specific emission height
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profiles for each S-emission class of gridded emissions and a plume rise

algorithm for stack sources.

The FMI emission inventory for north-west Russia has been maintained

because most of the Russian SO2 emissions near the Finnish borders seem

to be very small in the EMEP WebDab official and the expert inventory.

The SO2 emissions of the Kola Peninsula (450–480 kt SO2 in 2003) were

reduced to 32.4 kt SO2 in 2004 and further to 18.7 kt by 2010. There have

also been unexpected stepwise changes in the Russian oxidised nitrogen

(NOx) emissions: the NOx traffic (S7) emissions, for example, were reduced

from about 240 kt to 68.6 kt NO2 in the EMEP grid 65.80 (St. Petersburg)

from the 2009 to the 2010 inventory.

Measurements indicate, however, that there are large sulphur emissions

sources on the Russian side of the Finnish border. In the EEA data base

on European Air Quality, the measured SO2 concentrations in northern

Norway in 2010 exceeded both the daily limit values for the protection of

human health as well as the annual and winter limit values for the protection

of ecosystems (EEA 2012). Nikel, Zapoljarnyi, Monchegorsk, Kirovsk,

Apatity and Kovdor are also the highest pollution targets, M1–M5, of the

environmental hot-spot list of Barentsinfo (2013), and e.g. Norilsk Nikel

report directly on the internet their emissions from Nikel and Zapoljarnyi

(136 kt SO2 in 2009) as well as high SO2 concentrations at Svanvik

monitored by themselves (Norils Nikel 2013). Svanvik concentrations can

also be followed on-line at http://www.luftkvalitet.info/ and Janiskoski

concentrations at http://www.ilmanlaatu.fi/.

In 2007 the total SO2 emission over the Murmansk region was 21 204

t SO2 in the EMEP inventory, 289 319 t SO2 in the MACC inventory and

240 470 t SO2 in the FMI inventory. The NOx emissions over the Murmansk

region given by MACC, 19 424 t NO2, were lower than the corresponding

EMEP (34 888 t) or FMI emissions (25 626 t NO2).

For the years after 2007, the MACC emissions were scaled using the

emission trends of each country from EMEP. For those emission groups

missing from the MACC inventory (natural, marine, volcanic and Iceland

emissions) the EMEP emissions were used. For north-western Russia (the

Kola Peninsula, Karelia and Leningrad Oblast) the FMI’s own inventory is

still used, because the locations of the enterprises there are more exact; also

there are some well-known sources, e.g. in Karelia, missing from the MACC

inventory.

For the Baltic Sea model we use the specific Baltic Sea ship emission

inventory. This AIS-signal-based inventory was developed at the FMI in

co-operation with researchers from Åbo Akademi University and Turku
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University and with the support of the Marine Administration, FMA, and
the Finnish State Technical Research Centre, VTT (Stipa et al. 2007).

Each ship over the 300 tons gross tonnage limit sailing the BS has to
send AIS-transmitter safety signals at variable time intervals: these signals
contain the unique IMO code of the ship and information on the ship’s
movements, its load, destination and type. These signals are collected by
AIS-receiver stations located on the coasts of the Baltic Sea. The FMA
collects the AIS signals into a local database and sends this information,
as do also the other maritime administration offices surrounding the BS, to
the HELCOM database (DB). FMI, having access to the HELCOM DB,
decodes the AIS-signals and, using the IMO code, retrieves information on
the ship’s machinery from the Lloyds data base. The FMI model STEAM
(Ship Traffic Emission Assessment Model, Jalkanen et al. 2009) calculates
an emission estimate for each individual ship as a function of the ship’s
type, its engine load, fuel type, speed and emission control technology, using
current weather and wave height information, and sums the emissions on
a latitude-longitude grid with a selected resolution, then reporting on-line
using a ∼ 450 s–1h time-interval. Emissions calculated with STEAM are
available from 2006 onwards. That year the temporal coverage of the signals
collected was about 93%, while around 16% of ships sailed without an IMO
number (Jalkanen et al. 2012). For small pleasure boats and other vessels,
we use the VTT emission inventory. When the AIS signal data are missing,
the monthly average emission estimate has been used.

The FMI, MACC and EMEP estimates of the BS international ship
traffic emissions are compared in Table 1. Over the BS, North Sea and the
English Channel the maximum allowable sulphur content of marine fuels
decreased due to the EU directive (2005/33/EC) from 1.5 to 1% in July
2010, and to 0.1% in port areas in January 2010. From the year 2009 to
2011, the FMI-estimated ship emissions of SO2 decreased by 48 kt and the
EMEP emissions by 40 kt SO2. The annual sums of the emissions do not

Table 1. Comparison of the FMI international ship traffic emissions in kt NO2 and
kt SO2 over the Baltic Sea in the FMI, EMEP and MACC emission inventories.
St1 and St2: first and second versions of the FMI emission model STEAM

FMI FMI EMEP MACC FMI FMI EMEP MACC
NOx, St1 NOx, St2 NOx NOx SO2, St1 SO2, St2 SO2 SO2

2007 400 369 315 350 138 144 167 205
2008 390 377 321 148 132 145
2009 384 360 327 143 132 122
2010 402 333 113 99
2011 414 339 95 82
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differ substantially, considering the overall inaccuracy and errors in emission
estimates.
The new version of the STEAM model (St2, STEAM2, Jalkanen et al.

2012) used in this study also calculates emissions of CO, CO2 and particulate
matter (elementary and organic carbon, ash, hydrated SO4). The main
advantage of the new AIS-based inventory is its excellent temporal and
spatial resolution.

4. Results

The modelled 2008–2011 average oxidised nitrogen (NOx), reduced
nitrogen (NHx) and sulphur (S) depositions are presented in Figure 1. The
dry deposition share of the total NOx deposition increases from 10–20% over

a b c

Figure 1.Modelled 2008–2011 average oxidised nitrogen (NOx), reduced nitrogen
(NHx) and sulphur (S) deposition

a b

Figure 2. The 2008–2011 average oxidised nitrogen (NOx) and sulphur (S)
deposition caused by international ship traffic in the Baltic Sea
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the northern Gulf of Bothnia to 20–30% in the Sea of Bothnia, the Gulf of
Finland and the Gulf of Riga, being 30–40% in the central Baltic Proper and

in the southern Baltic Sea. The share of reduced nitrogen in the total N de-
position was less than 30% north of Åland, increasing gradually southwards
to over 50% in the Kattegat and Belt Sea areas. There was a rather sharp

dry deposition gradient over the shorelines for both nitrogen compounds.

The 2008–2011 average depositions of NOx and S caused by the
international ship traffic in the BS are presented in Figure 2 and the ship

deposition shares of the respective total deposition in Figure 3. The annual
sums of the total and ship-emission-originated depositions of sulphur and
nitrogen to the BS with a map of BS sub-basins – the Gulf of Bothnia (B1),

the Gulf of Finland (B2), the northern Baltic Proper (B3), the southern
Baltic Proper (B4) and the Kattegat and the Belt Sea (B5) – are presented

in Figure 4.

The ship emission originated deposition of oxidised nitrogen increased
between 2008 to 2011 from 12 to 14% of the BS total NOx deposition,
while the respective sulphur deposition declined from 28 to 20% of the

total due to the sulphur directive restrictions. Sulphur is effectively dry-
deposited into the sea, only 19–25% of the ship emission originated sulphur

deposition is wet deposition. The total modelled NOx deposition to the BS
was respectively 6% and 15% lower in 2008 and 2011 but 1% and 5% higher
in 2009 and 2010 than the most recent EMEP estimates from HELCOM

2013. The modelled deposition of NHx was respectively 18, 22, 5 and 15%
lower than the EMEP estimate for the years 2008–2011. One reason for

the difference is the high deposition gradient at the coastline: in Hilatar,
the deposition was integrated only over grid points with 100% open water
(372 954 km2), while the complete 0.068◦ Hirlam BS mask of 420 325 km2,

also covered non-marine water areas in the BS coastal zone.

Total depositions have a rather high seasonal variation (Figure 5).
During spring and early summer when the MABL is usually stably stratified,

accumulated precipitation is low and storms are rare, depositions have
their minimum values. The May to July NOx(S) deposition was on
average 44(38)% of the November–January deposition of the same year, the

minimum monthly deposition being 26(24)% of the respective maximum
monthly deposition during the period studied. The temporal variation

is higher over the northern sub-basins and for dry and wet deposition
separately.

The monthly NOx deposition originating from BS ship-traffic emissions
reached a maximum in the summer months due to higher dry deposition

velocities, and a faster chemistry converting NO2 into scavengable chemical
species. The S deposition did not have as high a seasonal variation
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a b

Figure 3. The average 2008–2011 oxidised nitrogen (NOx) and sulphur (S)
deposition shares of the respective total deposition originating in Baltic Sea ship
emissions

totN totS totN totS totN totS totN totS

2008 2009 2010 2011

Total deposition of sulphur and nitrogen to the BsS, kt N/S

2008 2009 2010 2011

Total deposition of ship-emission  originated
sulphur  and nitrogen to the BS, kt N and kt S
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Figure 4. Annual sums of the sulphur [t S] and nitrogen [t N] deposition to the
Baltic Sea: a) total deposition, b) deposition emitted by shipping, c) map of the BS
sub-basins. The five BS sub-basins: the Gulf of Bothnia (B1), the Gulf of Finland
(B2), the Northern Baltic Proper (B3), the Southern Baltic Proper (B4) and the
Kattegatt and the Belt Sea (B5)
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Figure 5. Monthly total accumulated deposition of nitrogen (a) and sulphur (c)
to the Baltic Sea and deposition of nitrogen due to shipping (b) and deposition of
sulphur due to shipping (d), [t S] and [t N] per month
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(Figure 5). The decline in sulphur emissions due to the EU restrictions
regarding fuel S content can be directly seen in the decrease in the S
deposition towards 2011.

The monthly average wet deposition share of the NOx deposition
was highest in the northern BS sub-basins in winter (up to 80%) and
autumn, and lowest during the spring months in the south (Figure 6).
The accumulated seasonal precipitation (Figure 7) and the strength of the
ice winter have a direct effect on the dry and wet deposition shares. The
contribution of accumulated annual precipitation to the total BS varied from
556 km3 in 2010 to 839 km3 in 2008, but the seasonal precipitation sums over
sub-pools did display different inter-annual variation. On average, winters
were colder at the end of the period, being characterised by more northerly
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atmospheric boundary layer (ABL), [m], over the BS sub-basins during the study
period
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a b

Figure 9. Modelled annual average SO2 and NO+NO2 concentrations in 2010,
[µg (S) m−3] and [µg (N) m−3]

a

c

b

d

Figure 10. Modelled annual average concentrations of ammonia, ammonium,
total nitrate and sulphate in air, 2010

winds from clean areas and lower dry deposition over the ice cover. From
2008 to 2011 the HIRLAM winter (JFM) average MABL height dropped
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a

c

b

d

Figure 11. Modelled concentrations of SO2, NOx (NO+NO2), sulphate and
nitrate in air, originating from Baltic Sea ship emissions in 2010

from 420–450 m to around 200 m over the northern BS sub-basins

(Figure 8).

The modelled SO2 and NOx (NO+NO2) concentrations in 2011 are

presented in Figure 9, the average concentrations of ammonia, ammonium,

total nitrate and sulphate in air in Figure 10. Figure 11 shows the modelled

concentrations from BS ship emissions of SO2, NOx, sulphate and nitrate in

air, in 2011, when the marine fuel S content reductions were implemented.

The modelled ship-originated concentrations of sulphate on BS coasts

(Figure 11) were 0.1–0.5 µg (S) m−3. The maximum 2010 annual average

proportion of ship-originated sulphate, including direct SO4 emissions and

secondary particles, occurred along the shipping routes. Those modelled

maximum proportions exceeded 60% of the modelled total SO4 over the

open water areas at the mouth of the GoF, but this ship-emission originated

SO4 share fell generally to 5–30% along the shores of sub-basins B1–B5,

exceeding, however, 30% in the coastal areas of the southern BS where the

ship routes run close to the coastline.
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5. Model validation

For verifying the deposition of this study the monthly average con-
centrations in precipitation at 22–26 background stations are presented

for the years 2008–2011 in Figures 12 and 13 in units of mg l−1. When
the intercomparison in units of mg m−2 was calculated from daily values
(Figure 14) the correlation coefficient was significant (0.6348, N=5324) and
the average annual modelled and measured depositions were close to each
other: 0.64 and 0.60 mg (N) m−2 respectively. The intercomparison results
for one-hour NO2 concentration at Utö station are presented in Figure 15.

The intercomparison of the concentrations in air with monthly EMEP/

NILU measurements is presented in Table 2. The NO2, SO2, NH3, sea-salt
corrected SO4 and sum of NH3 and NH4 concentrations in air are rather
well simulated; the model overestimates NO3, HNO3 and the sum of HNO3

and NO3, but underestimates NH4-concentrations. The correlations are

model meas. model meas. model meas.

NO3 mg(N) l-1 NH4 mg(N) l-1 SO4

Model-measurement intercomparison:  annual  average concentrations in precipitation
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Figure 12. Model-measurement intercomparison: annual average concentrations
in precipitation, 2008–2011

0 0.2 0.4 0.6 0.8

model

NO , 2008-2011 annual average
model vs. measurement, mg(N) l

3
-1

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.2 0.4 0.6 0.8

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

SO , 2008-2011 annual average
model vs. measurement, mg(S)

4
-1l

0 0.2 0.4 0.6 0.8

NH , 2008-2011 annual average
model vs. measurement, mg(N) l

4
-1

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

a b c

Figure 13. Model-measurement intercomparison: annual average concentrations
in precipitation, [mg l−1] 2008–2011
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rather high and significant, the p-values for each compound being less than
0.001.
The modelled accumulated deposition of oxidised (reduced) nitrogen to

the Baltic Sea, which varied between 102–131 (73–90) kt N in 2008–2011,
was slightly smaller in comparison to the HELCOM (EMEP) estimates,



364 M. Hongisto

Table 2. Model-measurement intercomparison: concentrations in air. Units
[µg m−3] (S) or (N)

Average Average Correlation N Max Max
meas. model. meas. model.

NO2 2008–2010 1.32 1.61 0.69 852 6.22 7.91
SO2 2008–2010 0.44 0.38 0.66 984 4.26 4.30
NH3 2008–2010 0.68 0.86 0.64 408 3.46 6.14
HNO3 2008–2010 0.12 0.16 0.47 300 1.11 0.73
NO3 2008–2010 0.21 0.70 0.64 468 1.61 2.75
SO4 – corr. 2008–2010 0.34 0.31 0.75 600 1.87 1.73
SO4 – tot. 2008–2010 0.51 0.38 0.77 972 2.75 3.61
NH4 2008–2010 0.49 0.25 0.81 780 2.75 1.72
HNO3+NO3 2008–2010 0.39 1.00 0.72 912 2.57 6.21
NH3+NH4 2008–2010 0.96 0.87 0.81 876 4.75 6.38

but the modelled deposition was summed only over open sea areas.
The modelled deposition was rather well simulated when compared with
measured concentrations in precipitation (Figure 12). The modelled and
measured NO2 concentrations peaks in air at the Utö coastal station were
well reproduced in winter; in spring, however, when the MABL was very
stable, the observed concentrations were higher.
According to the data and maps EEA (2012), over the Baltic Sea and

its surroundings, in 2009 the annual limit value of NOx for the protection of
vegetation, 30 µg m−3, which should be measured at rural stations (directive
2008/EC/50), was exceeded in southern Norway. The limit values of the
annual and winter SO2 concentrations for the protection of human health
and vegetation (20 µg m−3) were also exceeded in northern Norway in 2009
and 2010 (EEA 2012). The modelled concentrations were lower: NO2 values
did not exceed these limits in background areas and SO2 values near Kola
Peninsula were not as high as those measured in Norway. But the modelled
concentrations representing a mean value of a ca 7× 7× 0.03 km3 gridbox
cannot be directly compared to measured values if there are local sources
near the measurement points. In the rather sparse measurement network
some stations may have suffered from local industrial or traffic pollution,
and if inversion situations are frequent, the concentrations rise. But the
measured concentrations are real and the exceeding of the directive values
should lead to emission reductions.

6. The effect of particles on human health

One of the aims of this paper was to evaluate the effect of the
sulphur directive for protecting people in the BS region from the adverse
health effects of the sulphate particles. The modelled annual sulphate
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concentration originating from ships’ plumes (Figure 11) did not exceed
0.5 µg (S) m−3 at any coastal location on the BS in 2010. However, the
model results are 7× 7 km2

× 30 m grid averages.

The aerodynamic diameter of the sulphate aerosols is mainly < 2.5 µm.
The EU’s target annual mean value for particles with diameters < 2.5 µm

(PM2.5) regarding the protection of human health is 25 µg m
−3. Ground-

level concentrations of fine particles, PM, < 2.5 µm in aerodynamic diameter
are associated with cardiovascular and respiratory mortality. The estimated
consequences on human mortality have a rather high variation.

Anenberg et al. (2010) estimated the global burden of human mortality
due to the increase in annual average PM2.5 concentrations from their
preindustrial level on a grid of 2.8◦ × 2.8◦ resolution. Concentrations of SO4,

NO3, NH4, black carbon BC and anthropogenic organic carbon particles
OC were included, but dust, sea salt particles and secondary organic
aerosols were excluded. The contribution of SO4 to the global average
PM2.5 concentration was 28.3% (the proportion of (NH4)2SO4, of which

the SO4 mass makes up 70%, was 40.4%) in Europe in 2000. Those
researchers estimated that if there is no low-concentration threshold below
which mortality does not increase, then in the year 2000 PM2.5 exposure
caused 3.7± 1 million extra mortalities globally, 633 000 of which were in
Europe.

From an average of six PM models Silva et al. (2013) estimated that 2.1
million (1.3 to 3 M) PM2.5-related extra deaths occurred globally, 154 000

(105–193 000) of which were in Europe.

A first estimate of the effect of global shipping-related PM emissions on

mortality was 60 000 annual deaths in 2002. It was expected to grow by
40% by 2012 (Corbett et al. 2007).

Winebrake et al. (2009) compared the effect of different sulphur control
strategies of global ship fuel S content on global mortality rates, and
concluded that the 2012 global premature death rate due to ships’ emissions,
i.e. 87 000, could be reduced by 33 500 persons with a 0.5% sulphur limit

and by 43 500 deaths with a 0.1% S limit.

Brandt et al. (2011) developed an integrated model system EVA

(Economic Valuation of Air pollution) for assessing the health-related
impact of air pollution (O3, CO, SO2, SO4, NO3 and primary emitted
PM2.5) from specific emission sources. Their estimate of the total number
of premature deaths in Europe due to air pollution, was 680 000 in 2000
and 450 000 in 2020. Of these numbers, 49 500 (2010) and 53 200 (2020)

were estimated to be caused by international shipping in the Northern
Hemisphere (NH). Brandt et al. estimated that the health effect of all
air pollutants from international ship traffic through the North Sea and the
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Baltic Sea was 20 377 extra annual deaths in Europe. This is a rather high
number, 41% of all deaths caused by NH ship traffic.

The report by Brandt et al. (2011) has been cited by politicians to
justify further reductions in the sulphur content of marine fuels (a maximum
S content of 0.1% from 1 January 2015). When the sulphur content of the
fuel is reduced, PM emissions will also be affected; however, most of the
effects can be found in the reduction of secondary sulphate particles, whose
ship-originated concentrations calculated in this study were low except close
to shipping lanes.

In order to estimate the effect of reduced sulphur emissions from ships on
European mortality, the effect of O3, NO2 and direct PM emissions should
be separated from the overall figure. This requires that the mortality is
estimated for each chemical compound and source type separately, but this
is generally not the case. According to Anenberg et al. (2010), O3 caused
6% of the total mortality of PM2.5 and O3 together in Europe, and 15.8%
globally. However, this mortality depends on the local relative emission
amounts; for example, according to Brandt et al. (2011), the health effect
of all Danish emissions on acute deaths in Denmark was negative, because
the high NOx emissions reduced domestic O3 concentrations.

7. Conclusions

The total deposition of nitrogen to the Baltic Sea open water areas
varied between 178 and 205 kt N, and the sulphur deposition from 77 to
101 kt S. The maximum N and S depositions were reached in 2010, the
minimum N deposition in 2009 and the minimum S deposition in 2011.
The proportions of dry deposition were low in the northern BS, increasing
gradually southwards. There was a rather sharp dry deposition gradient
over the shorelines. The depositions had a high seasonal variation while in
winter and late autumn when the sea is open, high turbulence mixes long-
range transported upper concentrations effectively close to the surface, and
dry deposition velocities are also high. Additionally, most of the storms
occur during these same seasons with stronger precipitation and higher
winds. However, the ship emission originated NOx deposition was highest
during the summer due to the higher emissions and the faster chemistry
converting compounds into scavengable species. Ship emissions occur near
the surface, thus vertical mixing should not play as big a role as for long-
range transported compounds. Ship emitted sulphur compounds are mostly
in scavengable form, thus their seasonal deposition does not vary as much.
The ship emission originated depositions fraction of the total NOx

deposition to the BS varied during the 2008 to 2011 period from 12 to
14% while the respective contribution of sulphur deposition declined from
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28% to 20% of the total modelled S deposition due to the sulphur directive

restrictions. Ship emissions contributed from 20 to 40% of the grid average

NO2 concentration and from 10 to 25% of the SO2 and SO4 concentrations

along BS coasts. In the eastern BS, for example, ship originated SO4

concentrations fell to > 5% of the modelled total sulphate concentration

within 10–100 km of the coast. In general, the proportion of ship emitted

concentrations mostly fell quite sharply with distance from the coastline.

The effect of the sulphur directive abatement of ships’ sulphur emissions

can be deduced indirectly from the proportion of SO4 concentration in the

whole PM2.5 mass in Europe. The chemical composition of particulate

matter at six urban background sites in Europe was studied during 7-week

field campaigns (Sillanpää et al. 2006). The mean concentrations of PM2.5

varied from 8.5 to 30 and from 5.4 to 29 µg m−3 for PM2.5−10, PM2.5 being

composed mainly of organic matter, elementary carbon (EC), secondary

inorganic aerosols and sea salt (SS), while the larger fraction contained soil-

derived particles, carbonaceous compounds, SS and nitrate. Non-SS-SO4

contributed from 14 to 31% to PM2.5 and 0.8 to 6.8% to PM2.5−10. NO3

contributed from 1.1–18% to PM2.5 and 3.7–14% to PM2.5−10; NH4 7.9–

9.3% to PM2.5 and 0.06–2.7% to the PM2.5−10 fraction.

The model simulations from this study show that the share of ship orig-

inated sulphur particles in the modelled total sulphur along BS coastlines

in 2010 was around 5% in the northern BS, 5–10% along the Polish coast,

2–5% along the Lithuanian coast, 10–20% north of Stockholm and Turku

and along the coast of the eastern GoF, 20–30% on the Swedish coast south

of Stockholm and in the south-west corner of Finland; it exceeds 30% only

in the coastal areas of the Danish Straits.

The share of the modelled ship originated SO4 concentration of the total

PM2.5 on BS coastlines thus varies from 0.3% to 12%, being approximately

< 9% along most (> 90%) of the coastline and < 5% on ca 70% of the BS

coastline. If the aerosol chemical composition of Sillanpää et al. (2006) is

used, only 0.15–6% of the total PM mass < 10 µm along the BS coastline is

BS ship-originated sulphate. This percentage declines sharply with distance

from the sea, so in the BS region the contribution of ship originated SO4

concentrations to PM concentrations is on average very low, and their

contribution to the mortality caused by PM concentrations in air should

also be low.

The mortality caused by sulphur originating from Baltic Sea ship-

emissions was most likely overestimated when the sulphur directive was

enacted. The quantitative magnitude of the sulphur-emission effect on

mortality should be re-evaluated. The work will continue in that all PM



368 M. Hongisto

emissions of BS ships will be modelled, because they produce the majority
of the health problems caused by shipping traffic.

Acknowledgements

I would like to thank Robin King, Curtis Wood and Peter Senn for
suggesting language corrections and the unknown reviewers for their useful
comments. The deposition and surface concentration fields will be made
available for environmental impact studies through the FMI open data web
service interfaces for geospatial data.

References

Anenberg S. C., Horowitz L.W., Tong D.Q., West J. J., 2010, An estimate of the
global burden of anthropogenic ozone and fine particulate matter on premature
human mortality using atmospheric modeling, Environ. Health Persp., 118,
1189–1195, http://dx.doi.org/10.1289/ehp.0901220.

Asman W.A.H., Janssen A. J., 1987, A long range transport model for ammonia
and ammonium for Europe, Atmos. Environ., 21 (10), 2099–2119, http://dx.
doi.org/10.1016/0004-6981(87)90344-1.

BACC – BALTEX Assessment of Climate Change, 2008, Assessment of climate
change for the Baltic Sea basin, The BACC Author Team, Reg. Clim. Stud.
Ser., Springer, Berlin, Heidelberg, 474 pp., [http://www.hzg.de/institute/
coastal research/projects/baltex/bacc downloads/index.html.en (9.12.2013)].

Barentsinfo, 2013, Barents environmental hotspots, [http://www.barentsinfo.fi/
beac/hotspots/ (9.12.2013)].

Bartnicki J., Gusev A., Aas W., Fagerli H., Valiyaveetil S., 2009–2012,Atmospheric
supply of nitrogen, lead, cadmium, mercury and dioxins/furans to the Baltic
Sea in years 2010–2009, Summ. Rep. HELCOM, MSC-W Tech. Rep. 2/2012,
1/2011, 2/2010, 2/2009.

Bartnicki J., Gusev A., Aas W., Fagerli H., Valiyaveetil S., 2008, Atmospheric
supply of nitrogen, lead, cadmium, mercury and dioxins/furans to the Baltic
Sea in 2006, MSC-W Tech. Rep. 2/2008.

Bartnicki J., Gusev A., Aas W., Berg T., Barrett K. Fagerli H., 2002–2006,
Atmospheric supply of nitrogen, lead, cadmium, mercury and dioxins/furans
to the Baltic Sea in 2004–2001, MSC-W Tech. Rep. 3/2006–2003.

Bartnicki J., Gusev A., Barrett K., Simpson D., 2002, Atmospheric supply of
nitrogen, lead, cadmium, mercury and dioxins/furans to the Baltic Sea in
1996–2000 for the Helsinki Commission (HELCOM), Baltic Marine Environ.
Prot. Comm., Joint MSC-W & NILU Note 6/02.

Bartnicki J., Semeena V. S., Fagerli H., 2011, Atmospheric deposition of Nitrogen to
the Baltic Sea in the period 1995–2006, Atmos. Chem. Phys., 11, 10057–10069,
http://dx.doi.org/10.5194/acp-11-10057-2011.



Impact of the emissions of international sea traffic . . . 369

Bott A., 1989, A positive definite advection scheme obtained by nonlinear
renormalization of the advective fluxes, Mon. Weather Rev. 117, 1006–1015,
http://dx.doi.org/10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2.

Brandt J., Silver J.D., Christensen J.H., Andersen M. S., Bønløkke J.H., Sigsgaard
T., Geels C., Gross A., Ayoe B., Hansen A.B., Hansen K.M., Hedegaard G.B.,
Kaas E., Frohn L.M., 2011, CEEH scientific report No 3: Assessment of health
cost externalities of air pollution at the national level using the EVA Model
System, Cent. Energy, Environ. Health Rep. Ser., Aarhus Univ., Nat. Environ.
Res. Inst., Roskilde, 98 pp.

Carstensen J., Henriksen P., 2009, Phytoplankton biomass response to
nitrogen inputs: a method for WFD boundary setting applied to Danish
coastal waters, Hydrobiologia, 633 (1), 137–149, http://dx.doi.org/10.1007/
s10750-009-9867-9.

Chang T.Y., 1984, Rain and snow scavenging of HNO3 vapour in the atmosphere,
Atmos. Environ., 18 (1), 191–197, http://dx.doi.org/10.1016/0004-6981(84)
90242-7.

Chang T.Y., 1986, Estimates of nitrate formation in rain and snow
systems, J. Geophys. Res., 91 (D2), 2805–2818, http://dx.doi.org/10.1029/
JD091iD02p02805.

Corbett J. J., Winebrake J. J, Green E.H., Kasibhatla P., Eyring V., Lauer
A., 2007, Mortality from ship emissions: A global assessment, Environ.
Sci. Technol. Lett., 41 (24), 8512–8518, http://dx.doi.org/10.1021/es071686z.

EEA, 2012, AirBase – the European air quality database, [http://www.eea.europa,
eu/data-and-maps/figures].

EEA, 2013, The impact of international shipping on European air quality and
climate forcing, Tech. Rep. No 4/2013, European Environ. Agency, 84 pp.,
http://dx.doi.org/10.2800//75763.

Geels C., Hansen K.M., Christensen J.H., Ambelas Skjoth C., Ellermann T.,
Hedegaard G.B., Hertel O., Frohn L.M., Gross A., Brandt J., 2011, The
projected change in atmospheric nitrogen deposition to the Baltic Sea towards
2020, Atmos. Chem. Phys. Discuss., 11 (7), 21 533–21567, http://dx.doi.org/
10.5194/acpd-11-21533-2011.

HELCOM, 2011, Fifth Baltic Sea pollution load compilation, Baltic Sea Environ.
Proc., No. 128., 217 pp.

Hertel O., Ambelas Skjoth C., Brandt J., Christensen J.H., Frohn M., Frydendall
J., 2003, Operational mapping of atmospheric nitrogen deposition to the
Baltic Sea, Atmos. Chem. Phys., 3 (6), 2083–2099, http://dx.doi.org/10.5194/
acp-3-2083-2003.

Hesstvedt E., Hov Ø., Isaksen S.A., 1978, Quasi-steady-state approximations in
air pollution modelling: Comparison of two numerical schemes for oxidant
prediction, Int. J. Chem. Kinet., 10 (9), 971–994, http://dx.doi.org/10.1002/
kin.550100907.



370 M. Hongisto

Hongisto M., 2012, Origin and possible effects of episodic nutrient deposition
events over the Baltic Sea, Int. J. Environ. Pollut., 50 (1/2/3/4), 293–307,
http://dx.doi.org/10.1504/IJEP.2012.051201.

Hongisto M., 2011, Variability of the marine boundary layer parameters over the
Baltic Sea sub-basins and their impact on the nitrogen deposition, Oceanologia,
53 (1-TI), 391–413.

Hongisto M., 2005, Uncertainties in the meteorological input of the Chemistry-
Transport Models and some examples of their consequences, Int. J. Environ.
Pollut., 24 (1/2/3/4), 127–153, http://dx.doi.org/10.1504/IJEP.2005.007390.

Hongisto M., 2003,Modelling of the transport of nitrogen and sulphur contaminants
to the Baltic Sea Region, FMI Contribut. No. 40, Helsinki, 188 pp.

Hongisto M., 1998, Hilatar, a regional scale grid model for the transport of sulphur
and nitrogen compounds, FMI Contribut. No 21, Helsinki, 152 pp.

Hongisto M., Joffre S., 2005, Meteorological and climatological factors affecting the
transport and deposition of nitrogen compounds over the Baltic Sea, Boreal
Environ. Res., 10 (1), 1–17.

Iversen T., Saltbones J., Sandnes H., Eliassen A., Hov Ø., 1989, Airborne
transboundary transport of sulphur and nitrogen over Europe – Model
descriptions and calculations, EMEP MSC-W Rep. 2/89. DNMI, Oslo.

Jalkanen J.-P., Brink A., Kalli J., Pettersson H., Kukkonen J., Stipa T., 2009,
A modelling system for the exhaust emissions of marine traffic and its
application in the Baltic Sea area, Atmos. Chem. Phys., 9 (23), 9209–9223,
http://dx.doi.org/10.5194/acp-9-9209-2009.

Jalkanen J.-P., Johansson L., Kukkonen J., Brink A., Kalli J., Stipa T., 2012,
Extension of an assessment model of ship traffic exhaust emissions for
particulate matter and carbon monoxide, Atmos. Chem. Phys., 12 (5), 2641
–2659, http://dx.doi.org/10.5194/acp-12-2641-2012.

Jonsen J.E., Berge E., 1995, Some preliminary results on transport and deposition
of nitrogen compounds by use of the Multilayer Eulerian Model, EMEP/MSC-
W, Note 4/95, 25 pp.

Jonson J.E., Tarrasón L., Bartnicki J., 2000, Effects of international shipping on
European pollution levels, EMEP/MSC-W, Note 5/00, 24 pp.

Langner J., Andersson C., Enghardt M., 2009, Atmospheric input of nitrogen to the
Baltic Sea basin: Present situation, variability due to meteorology and impact
of climate change, Boreal Environ. Res., 14, 226–237.

Lindfors V., Joffre S.M., Damski J., 1991, Determination of the wet and dry
deposition of sulphur and nitrogen compounds over the Baltic Sea using actual
meteorological data, FMI Contrib. 4.

MACC, 2011, MACC European emission inventory for the Years 2003–2007, TNO
Rep. TNO-060-UT-2100-00588.

Neff J.C., Holland E.A., Dentener F. J., McDowell W.H., Russell K.M., 2002, The
origin, composition and rates of organic nitrogen deposition: A missing piece
of the nitrogen cycle?, Biogeochemistry, 57/58, 99–136, http://dx.doi.org/10.
1023/A:1015791622742.



Impact of the emissions of international sea traffic . . . 371

Norilsk Nikel, 2013, www.nornik.ru, http://www.kolagmk.ru, http://www.
kolagmk.ru/ecology/monitoring, 34 pp., [see the link above to ppt presentation
in Russian (9.12.2013)].

Plate E., 2000, Variabilität der Zusammensetzung anorganischer Aerosole –
insbesondere der reaktiven Stickstoffverbindungen – in küstennahen Gebieten
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Knuuttila S., Durkin M., 2013, Review of the fifth Baltic Sea pollution load
compilation for the 2013 HELCOM ministerial meeting, Baltic Sea Environ.
Proc. No. 141, Helsinki Comm.

Stipa T., Jalkanen J.-P., Hongisto M., Kalli J., Brink A., 2007, Emissions of
NOx from Baltic shipping and first estimates of their effects on air quality
and eutrophication of the Baltic Sea, 33 pp., [https://helda.helsinki.fi/handle/
10138/1209 (9.12.2013)].



372 M. Hongisto

Tuovinen J.-P., 1992, A dispersion model of air pollutants based on the
K theory of turbulent diffusion, Teknillinen korkeakoulu, Teknillisen fysiikan
koulutusohjelma, Diplomityö, 109 pp., (in Finnish).
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