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Abstract

Continuous measurements of the aerosol particle number concentration (PNC)
in the size range from 4.5 nm to 2 µm were performed at the Preila marine
background site during 2008–2009. The concentration maxima in summer was
twice the average (2650± 850 cm−3). A trajectory-based approach was applied
for source identification. Potential Source Contribution Function (PSCF) analysis
was performed to estimate the possible contribution of long-range and local PNC
transport to PNC concentrations recorded at the marine background site. The
PSCF results showed that the marine boundary layer was not seriously affected
by long-range transport, but that local transport of air pollution was recognized

* The research leading to these results has received funding from Lithuanian-Swiss
cooperation programme to reduce economic and social disparities within the enlarged
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as an important factor. North Atlantic and Sea-Marine type clusters respectively
represented 32.1% and 17.9% of the total PNC spectra and were characterized
by the lowest PNCs (1 080± 1 340 and 1 210± 1 040 cm−3 respectively) among all
clusters.
Wavelet transformation analysis of 1-h aerosol PNC indicated that while the

16-h scale was a constant feature of aerosol PNC evolution in spring, the longer
(∼ 60-h) scales appeared mainly over the whole year (except June). Principal
component analysis (PCA) revealed a strong correlation between PNC and NaCl,
highlighting the influence of sea-salt aerosols. In addition, PCA also showed
that PNC depended on optical and meteorological parameters such as UVR and
temperature.

1. Introduction

In recent decades, atmospheric research has focused on the global
distribution of atmospheric aerosol particles because of their effects on
the global and regional climate and the environment. Particulate matter
(PM) can also exert an influence: it affects the Earth’s radiation budget
directly by absorbing and scattering light, and indirectly by acting as
cloud condensation nuclei (Lohmann & Feichter 2005). Recently, numerous
epidemiological and toxicological studies have addressed the association
between the PM concentration and the negative health risk due to ultrafine
particles (UFP, particle diameter Dp< 0.1 µm) compared to particles of
greater diameters (Englert 2004, Xia et al. 2006, Gong et al. 2006, Delfino et
al. 2009). The marine aerosol constitutes one of the most important natural
aerosol systems globally. Recent measurements indicate the existence of
many submicron and ultrafine-mode (< 0.1 µm) sea-salt aerosol particles
that dominate the aerosol particle number concentration (PNC) in the
marine environment (Clarke et al. 2006). In view of recent interest in
the effects of anthropogenic aerosols on marine clouds and precipitation,
the number concentration of marine aerosol particles assumes an important
role as a property of the background aerosol to which the influence of
anthropogenic aerosols are to be compared.

Although the current National Ambient Air Quality standards for PM
(based on PM2.5 and PM10) are mass-based, there is increasing evidence
that a number-based standard for both climate and air quality studies is
often a more pertinent parameter for UFP concentrations (Englert 2004)
due to the fact that the UFP number concentration is dominated by its
fine fractions, the UFP fractions in particular (Hinds 2009). In ambient
air UFPs are present in very high numbers – on average of the order of
104–105 particles cm−3 in urban areas – but contribute only a few per cent
to the overall PM mass. Moreover, PM2.5 concentrations are often used
as a surrogate for UFP mass concentrations (Wilson & Zawar-Reza 2007),
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whereas a poor correlation has been found between the UFP number and

PM2.5 mass concentrations (Sardar et al. 2004, Rodriguez et al. 2005).

Seasonal and diurnal variations of aerosol PM2.5 and PM10 mass

concentrations have been extensively documented in various environments
(Putaud et al. 2004, Karaca et al. 2005, Ho et al. 2006, Dongarrá

et al. 2010, Saliba et al. 2010). Although it was declared that the

aerosol number concentration might be a better indicator of health effects
of particulates than the mass-based method, there is a lack of aerosol

number investigations. The Lithuanian National Air Quality Monitoring

Network does not carry out aerosol number concentration measurements.
Nonetheless, for decades in Lithuania the focus has been on the physical and

optical properties (Ulevicius et al. 2010, Plauškaitė et al. 2010) of aerosols

such as the mass concentration, but only a small number of continuous
measurement studies have been performed in the eastern Baltic compared

to the number concentration dynamics of ambient particulate matter. There

is therefore a need to study the processes controlling the dynamics of aerosol
number concentration in this background marine area. The present work

is a continuation of our efforts to analyse particle number concentration

dynamics (Juozaitis et al. 1996, Ulevicius et al. 2001, Plauškaitė et al.
2010) in the south-eastern Baltic Sea.

In the atmosphere, the aerosol PNC is highly variable in time and

space owing to physical and chemical processes such as particle production
and consumption by chemical reactions, condensation growth or phase

transitions. Typical air quality time series reveal periodic behaviour (hourly,

daily, weekly, seasonal, yearly) caused by the meteorological situation and
anthropogenic sources. Changing meteorological conditions, resulting from

the presence of a nearly stagnant high-pressure system or the passage

of frontal systems, cause the aerosol number concentration to vary on
a synoptic scale. Baseline fluctuations are expected to be caused by such

processes as the seasonal variations of the solar flux that change large-scale

flow patterns. Large data sets usually contain a huge amount of information,
which is often too complex for straightforward interpretation. Principal

Component Analysis, Fourier and wavelet transform (WT) are methods
that help to extract more information from a data set than when individual

parameter analysis is used. These analyses, based on PCA, wavelet and

Fourier transforms, are used to characterize time series in the frequency
domain and to study the periodicities hidden in the data (Eskridge et

al. 1997, Hies et al. 2000, Marr & Harley 2002). Standard principal

component analysis was developed largely for handling social science data
and has been used mainly for source identification and apportionment.

The Fourier transform allows us to determine different frequency bands
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in the analysed data domain and helps to understand various underlying

processes related to aerosol PNC fluctuations (Percival & Walden 2008).
Wavelet transform methods have found wide application in various fields

of science, including meteorology and oceanography (Foufoula-Georgiou

& Kumar 1995, Torrence & Compo 1998). The dissimilarity between these
two kinds of transform is that the individual wavelet functions are localized

in space. The wavelet theory can be viewed as an extension of the Fourier

theory and provides a flexible alternative to the Fourier method in non-
stationary signal analysis.

While the continuous time series is obtained as 1-h and 24-h series

of the average aerosol particle number concentration at a fixed location,
its analysis highlights a series of features that have not been investigated

before. To better understand the variability and climatic role of aerosols in

the south-eastern Baltic Sea region, intensive measurements of atmospheric
aerosol particles were conducted at a background marine site in 2008–

2009. The aim of this paper is to investigate the factors influencing PNC

concentrations in a marine background environment by applying the k-
clustering method, Principal Component Analysis, and wavelet and Fourier

transforms to aerosol number concentration data and to state the results

obtained by these techniques.

2. Material and methods

2.1. Site description and instrumentation

The aerosol PNC measurements were performed at the EMEP Preila

environmental pollution research station (55◦55′N, 21◦00′E, 5 m above sea
level) in a coastal/marine environment. Located on the Curonian Spit,

which separates the Curonian Lagoon and the Baltic Sea, this station can

be regarded as a regionally representative background area (Figure 1).

In Lithuanian conditions, there are several important phenomena gov-

erning aerosol particle number concentrations. The first one is long-range

transport (Andriejauskienė et al. 2008). If the air masses come from areas
with high emission levels, the air parcels contain more particles (Kulmala

et al. 2000). Secondly, in addition to the primary or direct emissions,

photochemical reactions in the atmosphere may also be responsible for the
formation of secondary ultrafine particles (Kulmala et al. 2004). Their

long-range transport as well as photochemical particle formation in the

atmosphere can lead to elevated PNC (Verma et al. 2009). Thirdly, weather
and season affect emissions and aerosol PNC, for example, as a result of

springtime wildfires (Ulevicius et al. 2010) or sea spray.
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Figure 1. The location of the observation site

For the 2008–2009 period, the aerosol PNC was measured continuously
using a condensation particle counter (CPC) UF-02 (Mordas et al. 2005).
The CPC was designed to detect ultrafine aerosol particles of a few
nanometres with high efficiency. The design of the instrument is based on
the swirling flow generated inside the saturator (43◦C) – condenser (10◦C).
The instrument uses a high carrier flow rate (1 l min−1). The aerosol flow
(0.27 l min−1) is extracted from the carrier flow by a capillary. This aerosol
flow is divided into two. The first one (0.03 l min−1) is directed to the
condenser. The second flow (0.24 l min−1) is circulated through a HEPA
filter and a saturator block, in which the flow is saturated with respect to
n-butanol and then mixed with the aerosol-laden air in a cooled condenser.
This mixing generates a supersaturated region with respect to n-butanol.
The butanol vapour condenses on the particles, which act as condensation
nuclei. This process increases the size of each individual nanoparticle. Such
large droplets can be conveniently detected by light scattering.

The lower cut-off size of the CPC, i.e. the limiting size when 50%
of the particles are successfully accounted for, is determined to be 4.35–
4.46 nm. The instrument is fitted with an impactor (laminar flow, nozzle
diameter= 7.4 mm) to reduce the influence of large particles. Annual
maintenance involves CPC calibration and thorough cleaning.

Other data, including mass concentrations of trace gases and meteoro-
logical parameters (temperature, relative humidity, wind speed and wind
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direction (T , RH, WS and WD respectively)), were obtained from the
Preila station EMEP measurement database. Air samples were collected
for a 24 h period using filter-packs and analysed for water-soluble ions:
(SO4

2−, NO3
−, Cl−, NH4

+, Na+, K+, Ca2+). The anions in the samples
were determined by ion chromatography (Dionex 2010i with conductivity
detector; column – Ion Pac AS4A-SC; eluent – 1.8 mM sodium carbonate
+1.7 mM sodium bicarbonate; regenerant – 100 mM H2SO4). The Na

+, K+

and Ca2+ concentrations were determined by atomic emission. Indophenol-
spectrophotometry was used to determine the NH4

+ concentration.

2.2. Clustering method

In accordance with the study of Dall’Osto et al. (2011), CPC data were
analysed using k-means cluster analysis (Beddows et al. 2009). 72 h back
trajectories of the air masses arriving at Preila were calculated for 12:00
UTC on each day to show the path taken by the air mass reaching the
sampling site over the previous three days.

Air mass back trajectory analysis was used to determine the direction
and sources of PNC at the receptor site. To calculate PSCF, the whole
eastern Baltic region covered by the trajectories was divided into an array
of grid cells. PSCF is a function of location as defined by the cell indices
i and j, while the number of segments with endpoints that fall in the ijth

cell is denoted by nij. The number of endpoints in the ij
th cell associated

with a trajectory that arrives at the sampling site at the same time as a
corresponding measured pollutant concentration higher than an arbitrary
criterion value is defined by mij. The value of PSCF for the ij

th cell is then

PSCFij = mij/nij . (1)

The value of PSCF was interpreted as the probability that the concentration
of a given pollutant greater than the criterion level is related to the passage
of an air parcel through the ijth cell. These cells are indicative of areas of
high potential contributions for that pollutant.

The contribution of each source group (cluster) to the aerosol number
concentration was quantitatively assessed by means of multiple linear
regression analysis (MLRA). MLRA was applied to the data, using PNC
as the dependent variable and the compounds that had the highest factor
loadings in each factor as independent variables.

According to the backward trajectories, air masses arriving at Preila
were classified into three main groups: Sea – Marine air type, SC – South-
Continental, NA – air masses originating from the North Atlantic and NC –
North Continental air masses. Because the direction of air mass transport
from the Baltic Sea region is our main interest in the analysis of marine
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source regions, angle distance was chosen as the clustering model. A final
cluster number of 4 was selected after visual examination of the mean
trajectory maps for different cluster numbers. After the cluster number
identification was assigned to each trajectory, the statistical results of the
mean concentration of all trajectories were calculated for each cluster.

2.3. Statistical investigation of the aerosol particle number

concentration

Since the direct assessment method of spectral density is based on an
infinite series consisting of the square module of the fractional Fourier
transform, the use of average values does not always lead quickly to
an appropriate result. Therefore, non-parametric (the so-called classical)
methods are usually applied to the spectral density assessment. The idea
of the basic Fourier transform (FT) is to write down a function f(x) as
the summation of a series of sine and cosine terms of increasing frequency.
The Fourier transform is very commonly applied to atmospheric time series,
and important conclusions can be drawn in the frequency domain. These
methods represent time series data in terms of contributions occurring
on different time scales or at characteristic frequencies. Fourier analysis
includes transformation of the original data (yt) into coefficients that
multiply an equal number of the periodic data. The Fourier transform
is defined by equation 2:

yt = y +

∞
∑

k=1

Ak cos

[

2πkt

T

]

+Bk sin

[

2πkt

T

]

, (2)

where T is the measurement period, Ak and Bk are the Fourier coefficients,
t is the time and k is the harmonic number.

Another method for analysing time series with regard to typical time
scales utilizes the wavelet transformation (WT), which decomposes the
signal into a time-frequency space. Both methods have great potential for
revealing the temporal variability of aerosol number concentrations, and for
evaluating their spectral similarity with respect to other turbulent scalars.
While WT decomposition can also be carried out using Fourier analysis,
there is a fundamental difference between WT and Fourier analysis. Fourier
analysis represents a signal at all frequencies or length scales, whereas
wavelet analysis provides both the spatial and frequency aspects of a signal.

In this work we used the most common Morlet wave, which is defined
as the product of the complex sinusoid and Gaussian curve:

ψ0(η) = π
−1

4 eiw0η
2

e
η
2

2 , (3)
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where η is a non-dimensional time parameter and w0 is the non-dimensional
frequency (assumed equal to 6 to guarantee admissibility of the function)
(Farge 2000). Given the time series of aerosol particle number concentration
xi with i = 0, . . . , N − 1, the wavelet transform reads

Wn(s) =
N−1
∑

n′=0

xn′ψ∗[
(n′ − n)δ

s
], (4)

where ∗ indicates the complex conjugation of the wavelet function, s is
the ‘dilation’ parameter used to change the scale, and n and n′ are the
translation parameters used to slide in time.
The two-dimensional view of such a variation is obtained by plotting the

wavelet amplitude

|Wn(s)| =
√

{Re[Wn(s)]}2 + {Im[Wn(s)]}2, (5)

where Re is the real part and Im is the imaginary part of the Morlet wavelet.
The inverse tangent of its imaginary-to-real part ratio thus denotes the

desired phase:

ϕn = tan−1{Im[Wn(s)]/Re[Wn(s)]}. (6)

PCA is a special case of factor analysis that transforms the original
set of intercorrelated variables into a set of uncorrelated variables. It is
a method that helps extract more information from a time-series than when
individual parameter analysis is used (Fahrmeir et al. 1996, Einax et al.
1997). It extracts the directions in which a cloud of data points is maximally
stretched, i.e. has maximal variance. The most relevant information of the
data set (J variables with K observations) is contained in these directions
(i.e. principal components (PCs)). The PCs represent orthogonal and
therefore independent linear combinations PCi of the J original variables v

PC(i) =

j−1
∑

j=1

bijvj, (7)

where bij are the component loadings and indicate how strongly a specific
original variable vj contributes to PCi, and vj is the original variable.
PCs are found by calculating the eigenvectors and eigenvalues of the
data covariance matrix. The projection of the original data on the
eigenvectors defines the PCs, and the eigenvalue of every eigenvector
indicates the contribution of the specific PC to the total data set variance.
There are several equivalent ways of deriving the principal components
mathematically. The simplest one is to find the projections which maximize
the variance. The first PC is the direction in feature space along which
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projections have the largest variance. PC2 is the direction which maximizes
variance among all directions orthogonal to the first. PC1 carries most of
the information about the data (i.e. explains most of the variance in the
data), PC2 will then carry the maximum residual information, and so on.
Here, multivariate data analysis was applied to the data set to quantify
their contribution to variation in the measured chemical composition and
meteorological parameters.

2.4. Significance levels

Some of the time series are generally noisy, complex and non-stationary.
Wavelet analysis was used to overcome this problem. It is known that
geophysical time series can be modelled as either white noise (with a flat
Fourier spectrum) or red noise (increasing power with decreasing frequency).
A simple model for red noise is the univariate lag−1 autoregressive AR(1).
Thus the greatest value of the power, lying within the 95% range of
connected domains of reliability, was calculated under the assumption that
the random component is Gaussian white noise or red noise by a factor
autocorrelation at lag unit step α = 0.6. If the power of the detected
wavelet signal was higher than expected (e.g. over the 95th percentile)
for such AR(1) noise, the signal was assumed to have not originated from
random oscillations in the atmosphere.

3. Results and discussion

The results are divided into several sections, including (a) the summary
statistics, (b) the clustering and potential source contribution function and
the spectral analysis of aerosol PNC time-series, and (c) the PCA method.
In these sections the aerosol particle number concentration time-series are
analysed by the methods described in section 2.

3.1. Summary statistics

The results discussed in this study cover the data acquired from 2008
to 2009. The various descriptive statistics regarding the measured aerosol
PNC distributions are depicted in Figure 2.
During the entire study period, there were several pronounced increases

in aerosol number concentration. It follows from Figure 2 that the highest
values were recorded during April–September of 2008 and 2009; the monthly
mean aerosol PNC varied from 1 500± 900 (November) to 4 500± 900 cm−3

(June) in 2008 and from 1520± 910 (January) to 3 830± 1 760 cm−3

(September) in 2009.
The maximum daily mean concentration during the whole measurement

period was recorded in April 2008 (12 500 cm−3) and the minimum in August
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Figure 2. Box plots of aerosol particle number concentration. The horizontal lines
in the box denote the 25th, 50th and 75th percentiles. The error bars denote the
5th and 95th percentiles. The asterisk below the 5th percentile error bar denotes
the minimum value and the one above the 95th percentile error bar denotes the
maximum value. The square symbol in the box denotes the monthly mean of the
number concentration

2008 (40 cm−3). During the cold season, when the air temperature dropped
below zero, a higher aerosol PNC was usually observed (October–March).
This is explained by the use of fossil fuels and biofuels for home heating.
The studies by Jayaratne & Verna (2001) indicate that the domestic use of
fossil fuels and biofuels could be a major source of aerosol particles. The
spring peaks (in both 2008 and 2009) are evident; the long-range or regional
movement of smoke emitted as a result of biomass burning had a strong
impact on the total aerosol number concentrations in Lithuania over this
period (Ulevicius et al. 2010, Byčenkienė et al. 2011). Here, the close
association between particle mass and number concentration may support
the hypothesis that vehicular emission sources or combustion emissions are
the major source of ultrafine particles. The maximum during spring, given
that the lowest detection limit was 4.5 nm, provides an excellent opportunity
for nucleation and the transport of new particles from cleaner areas (Laakso
et al. 2003).
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The effect of season is related to e.g. home heating, hence domestic

biomass burning is a significant emission source during the winter, especially
in the countryside. It is suggested that without sufficient photochemical

processes in winter, weak convection in the absence of high temperatures

and the stronger emission of primary particles during the heating period may
promote the formation of nanoparticles. The aerosol number concentration

exhibited great variability during the year. It can be seen that spring con-

centration maxima (up to 13 000± 980 cm−3) are ∼ 4 times the average. For
instance, Jaenicke (1993) gives a total PNC for remote continental areas of

6000 cm−3, whereas our values at Preila are about 2650± 850 cm−3. These

results are comparable to the study done at Hyytiala (2110 cm−3) (Laakso
et al. 2003). Laakso et al. (2003) analysed aerosol number concentrations

based on measurements made in four different places (Helsinki, Hyytiala,
Pallas and Varrio) in 1999–2001 and also found that the aerosol number

concentration started to increase distinctly during the spring months.

During 2009 the monthly mean aerosol number concentration started to
increase in April, reaching a peak of 3830 cm−3 in September. Meanwhile,

the hourly aerosol number concentration peaked during March and April,

whereas the monthly mean was recorded in April and June 2008 (Figure 2).
These months are associated with high aerosol particle concentration events,

which last for several days. The mean aerosol PNC in April was found to

be 3910± 2520 cm−3, whereas the value of 3370 cm−3 was calculated by
omitting high concentration event days. In 2009 the highest monthly mean

was recorded in September. Changes in the aerosol PNC mean, maximum,

75th and 25th percentiles show a slightly different behaviour of peak values
during the same period in 2008 and 2009. As shown in Figure 2, the

aerosol particle number concentration 75th percentile declined markedly in

January–March 2008. A weaker peak in autumn is thought to be weather-
related, especially the mixed layer height. The frequency distribution of

24 h mean number concentrations covering the two-year sampling period is

presented in Figure 3. The classes have a window size of 100 cm−3 (bars).
The distribution can be approximated by the lognormal distribution. Up

to this point we found a four-modal lognormal function to fit each of the

modes in Figure 3a.

Figure 3 shows some processes along with the four number concentration

ranges (modes (lines)) where high aerosol number concentrations are often
observed. Interestingly, as this figure shows, the most abundant values are

the lower aerosol PNC fractions of 1–2000 cm−3, indicative of clean air

masses and deposition. The significant contribution (the second mode) to
the number distribution of concentration is representative of background

and long-range transport (∼ 2400 cm−3). The third and fourth modes were
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Figure 3. The frequency distribution of 24-h mean aerosol particle number
concentration at Preila for the study period. The heights of the bars are
proportional to the class frequencies. The plot was fitted where the highest peaks
are the modes (lines)

noted within the 3800 and 5500 cm−3 size ranges respectively. The third
mode was believed to be representative of the summer period. The spring
and summer number size distributions shapes were close to those observed
at Nordic stations (Aspvreten, Pallas, SMEAR II) with an almost unimodal
distribution shape. The third mode is thought to represent accumulation
mode concentrations (Asmi et al. 2011).

The fourth mode is believed to be composed of chemically aged aerosols
occurring as a result of heterogeneous interactions between particles and
gases. Furthermore, the overall PNC distribution in the high concentration
modes was also found to be closely related to the number of primary particle
emissions, observed under conditions where large numbers of primary soot-
based particles were present (the heating season). Fourier and wavelet
transformations were undertaken to investigate this matter further.

3.2. Source apportionment and contribution

Figure 4 shows the frequency of air mass trajectories affecting PNC
during summer 2008. It is clear that Preila PNC was affected by
South Continental (39.3%, 3340± 1800 cm−3) and North Atlantic (32.1%,
1080± 1340 cm−3) air masses. The backward trajectories indicate a north
European (10.7%, 1760± 1810 cm−3) origin of the air masses with final
re-circulation over the sea (17.9%, 1210± 1040 cm−3).
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Figure 4. Potential source maps for PNC arriving at 5 m altitude in Preila during
summer 2008

As the high level of variation in PNC makes it difficult to differentiate
between local and long-range sources, the possible source contribution was
evaluated using the PSCF model. This was run with the summer data to
avoid the influence of home heating.
For the data the main part of the Baltic Sea appears to a potential

source of PNC. Baltic Sea regions are important potential PNC sources
with a PSCF value of around 0.6–0.8. Some regions were highlighted as
making high potential contributions. These are the regions located to the
west of the site. PSCF results for 5 m altitude trajectories indicate that
the areas south of Kaliningrad (Russia) and north of Poland are also high
potential source regions of PNC. There were fewer source potentials for
‘long-range’ marine regions (0.1–0.2).
In order to identify the sources contributing PNC, PCA was applied

to the data using Kaiser normalization and the Varimax rotated method
in SPSS statistical software packages (SPSS Inc, USA). PCA applied to
PNC identified three main chemical profile sources, which accounted for
76% of the total variance. Interpretation of source profiles is based mostly
on elements with factor loadings > 0.6, considered to be tracers of different
sources. Table 1 lists the key results of the calculated PCA in terms of the
(factor) loadings of the variables for the first three PCs. The last row in the
table gives the percentage of the variance in the data that can be explained
by the respective PC and the higher level PCs. PC1 explains 46% of the
variance in the data, and PC2 and PC3 respectively explain 20 and 10%
of the variance. PC4 to 10 are not shown because of the relatively low
explanatory value of the variance.
The first PC accounted for 46% of the variance and was strongly associ-

ated with NO3+HNO3 −N, NO3 −N, NH4 −N, SO4− S, NH4+NH3 −N
and SO2−S loadings, as well as with UVR, solar radiation and temperature,
which have negative values. This suggests that this component represents
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Table 1. The values of PCs and their associated variance explained by each
factorial axis

Component

1 2 3

NO3+HNO3−N 0.913 0.084 −0.077

NO3 −N 0.904 0.092 −0.081

NH4 −N 0.872 −0.274 0.078
SO−4−S 0.831 0.100 0.127
NH4+NH3 −N 0.802 −0.118 −0.058

SO2 − S 0.681 −0.096 0.030
NO2 −N 0.636 0.081 −0.211

Na+ 0.091 0.957 0.093
Cl− 0.039 0.953 0.106
T −0.602 0.02 0.696

RH 0.478 −0.077 −0.365

UVR(2008) −0.634 0.585 0.326
solar radiation (2008) −0.587 0.543 0.288
precipitation (2008) 0.183 −0.643 0.141
wind speed (2009) 0.100 0.923 0.223
cumulative % 46.392 66.206 76.332

Extraction method: Principal Component Analysis.
3 components extracted.

a general degree of pollution. A previous investigation reported that SO4
2−

comes from diesel exhausts (Cheng et al. 2010), NH4
+, SO4

2− and NO3
−

are from secondary aerosols, while Na+ and Cl− are from sea spray. The
only meteorological parameters that showed a noticeable loading for this
PC were UVR and temperature. Moreover, PC1 was slightly negatively
correlated with solar radiation, thus confirming that PNC is forced when

solar radiation and its wavelength range (UVR) are low. The loadings
of UVR and temperature were negative, indicating that high PNC was
negatively correlated with temperature. Thus, the effect of increased PNC
is enhanced by low temperature and solar radiation. Although the loadings
for summer and winter were almost identical for PC1, the explained variance
for the winter data (39%) was higher than that for the summer data (29%)
(not shown), clearly indicating the lesser influence of combustion processes
and the faster dilution of emitted particles in summer. In contrast to PC1,

PC2 showed high loadings of Na+, Cl−, precipitation (2008) and wind speed
(2009). It was surprising to find a high loading and positive correlation of
wind speed in the second component. Since Cl− is known to be a signature
element of sea salt, it is in a component of its own at the Preila site, so the
high loadings of Na+ and Cl− in PC2 could indicate the influence of high
wind speeds from the Baltic Sea. Factor analysis of PM2.5 aerosol particles
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collected in the Campus area by Moloi et al. (2002) showed that most of
the collected PM2.5 aerosol particles at that time came from sea spray. In
winter, PC3 showed a high loading only of global radiation t. In summer,
the correlation with other variables was more significant. For example, PC3
correlated with the Na+ and Cl− concentrations with loadings > 0.5, but
was negatively correlated with sulphur and nitrogen oxides.

3.3. Time-frequency analysis of aerosol number concentration

3.3.1. Periodicity analysis: periodogram

To detect common periodicities the standard Fourier transformation
method of time series analysis was used. Changing meteorological conditions
due to the presence of a nearly stagnant high-pressure system or the passage
of frontal systems cause variations of PNC on a synoptic scale. As the
aerosol concentrations vary strongly with season, especially in the Nordic
countries, seasonal variability was removed from the datasets used in wavelet
analysis by subtracting 15-day running average and 5 iterations from the
concentrations. Later time series of 720 daily means of the aerosol number
concentration were converted into the frequency domain using FT (1) and
expressed by a periodogram (not shown). The dominant frequencies of
the different amplitudes are the peaks of 4, 6–7, 11, 16 to 23 and 85
days. The frequencies obtained are related to the main diurnal cycles
and synoptic scale oscillations. It should be noted, moreover, that short
periods up to 2 days did not reflect the peculiarities of aerosol formation
and sink dynamics. A range longer than 4–11 days is probably related to
synoptic-scale processes, such as changes of air masses. The cause of the
23-day periodicity could be explained by the effect of synoptic-scale particle
transport.
The periods of 3–5 days are close to those characteristic of the lifetime

of major synoptic meteorological systems (cyclones and anticyclones).
A periodicity close to a 7-day cycle is slightly perceptible, although
road traffic is an insignificant parameter affecting the aerosol number
concentration in Preila. This suggests that PNCs do not vary strongly with
the human working week. As the characteristics of an anticyclonic system
are the reverse of those of a cyclone, it is likely that the ∼ 7-day period is
the sum of 3 and 4 days. Longer periods are probably related to the passage
of cyclones and anticyclones. In the long-term variations the frequency of
the 85-day period (2–3 months) is most probably connected with large-scale
weather dynamics, since the differences between the seasons are obvious in
Lithuania.
The principal difference in the amplitude spectra of aerosol number and

the BC concentration (Byčenkienė et al. 2011) is that the 4-, 7-, 11- and
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16-day periods of PNC and BC were observed in both time-series, whereas
the 3-, 29- and 63-day periods of the PNC time-series were absent. The
aforementioned peculiarities of the temporal variability are evidence of some
‘independence’ of the PNC and the lifetime of the absorbing substance (BC)
in the atmosphere. The relationship between the main periods of the PNC
and BC oscillations shows that the principal circulation dynamic processes
are of a similar origin.

3.3.2. Wavelet analysis

TheWT approach shows how different frequencies from the aerosol num-
ber concentration change over time (Figure 5). The scalogram characterizes
the signal energy on a time-scale domain.
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Figure 5. The wavelet power spectrum (left). The power has been scaled by the
global wavelet spectrum (right). The cross-hatched region is the cone of influence
(COI), where zero padding has reduced the variance

In this plot each coefficient is plotted by the gradient corresponding to
the magnitude of the coefficient. The location and size of the coefficient are
related to the time interval and the frequency range for this coefficient. The
existence of a peak in the scalogram of a time series of the PNC indicates
that a high-frequency component is present in the series. The highest
amplitudes of a spectrum indicate the main periodicities of the underlying
processes. Figure 5 (left) shows the wavelet analysis of the mean 1-day
aerosol number concentration time series relating to the 2008–2009 period.
The x-axis is the time expressed in days from the beginning of the year. The
y-axis of the scalogram refers to the time scale ranging from 1 to 512 days
(only large-scale details are shown at the bottom of the graph; hence, the
region between 512 and 720 days is not shown). As with Fourier analysis,
one can determine that the wavelet will fall within a specific range of scales
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and time. The absolute value of the Fourier and wavelet transforms is
not very pertinent, which is why we present the results on an arbitrary
scale. Several common characteristics are worth noting, i.e. the most
prominent feature of aerosol PNC data is a 1-year periodicity. The curves
show a maximum that is related to the 4–6, 16–30, 80, 120, 250 and 720 day
periods, which are considered to be monthly and quasi-annual oscillations.

It is evident that the periodicities obtained are dominant and well
matched with the peaks exhibited by the corresponding global wavelet
spectra. The approximate cyclic period of the PNC was found to be 5–
6 and 16–20 days, which corresponds to the synoptic and large-scale time
periods in which atmospheric high and low pressure systems interchange.
It is thought that the observed frequencies could be connected with quasi-
cyclic meteorological processes. Synoptic processes with periods between 8
and 11 days are known in meteorology (Vukovich 1997), and such processes
could be the cause of the observed periodicities. There are reports of 30–
60-day atmospheric oscillations as well (Knutson & Weickman 1987).

3.3.3. Spectral analysis of 1-h mean aerosol particle number

concentration

During the study period the mean 1-day aerosol number concentration
did not show any additional dynamic characteristic pattern apart from
the peaks occurring during the synoptic periods, favourable meteorological
conditions, air mass transport or as a result of anthropogenic influences.
Comparative analysis of hourly mean data between the separate months
reveals a weak 8-h periodicity in spring. Wavelet analysis (Torrence
& Compo 1998) (TC98) of 1-h aerosol number concentrations (Figure 6)
indicates that while the 16-h scale is a constant feature of the evolution
of the aerosol PNC in spring, the longer (∼ 60-h) scales appear mainly
over the whole year (WT analysis of PNC during separate months revealed
that longer (∼ 60-h) scales do not occur in June). The period of ∼ 60-h
corresponds to the synoptic time scale in which atmospheric high and low
pressure systems interchange. The 4-day time scale identified by Fourier
analysis replicates this result.

The greatest instability of frequencies of the amplitude spectrum is
characteristic of spring and 8–16-h cycles are pronounced. WT analysis
revealed that for the entire period of the experiment the most significant
aspect is the diurnal variation of concentration. However, as the cold season
approaches, the amplitudes of 1-day oscillations decrease significantly and
become less pronounced (Figure 6, upper). Thus, there is a certain relation
between PNC and the intensity of solar radiation. The results of WT
analysis of the peak values are comparable to those reported for the coast
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Figure 6. The wavelet power spectrum (using the Morlet wavelet) of aerosol
particle number concentration (left) and global wavelet power spectrum (right):
November–December (upper); April–May 2009 (bottom). The cross-hatched region
is the cone of influence, where zero padding has reduced the variance in values of
the first principal component

of Lake Baikal (Kaplinsky & Khutorova 2010), where periodicities of 4-,
6-, 12-, 14–16- and 22–24-h were detected. Mesoscale fluctuations can be
caused by atmospheric dynamics associated with convection, relief, the daily
variability of humidity and wind speed/direction and other meteorological
parameters. The results were difficult to interpret owing to a variety of
processes affecting the PNC. The presence of more oscillations during spring
may indicate the existence of an effective synoptic mechanism influencing
PNC dynamics. Analysis of the phase of the two-year period showed that
the phase of the interval signal was not preserved. More attention was
drawn to the existence and study of the period associated with new particle
formation (3.3).

3.3.4. Pollutant concentration correlations

In order to investigate the characteristics and processes affecting PNC,
together with meteorological parameters, trace gases were investigated
at the Preila background marine site. Spearman correlation coefficients



Table 2. Spearman correlation coefficients between pollutant concentrations and meteorological parameters

PNC SO2S NO2 −N NH4+NH3 NO3+HNO3 NO3 −N NH4−N SO4 − S Cl− Na+ T RH UVR Solar
−N −N radiation

PNC 1 0.507∗∗ 0.495∗∗ 0.473∗∗ −0.565
∗∗ −0.352

∗∗ −0.093
∗ −0.434

∗∗ −0.443
∗∗ −0.285

∗∗ 0.227∗∗ 0.469∗∗ 0.598∗∗ 0.724∗∗

n 613 614 611 594 571 592 594 593 594 607 610 571 610
SO2− S 1 0.353∗∗ 0.321∗∗ −0.252

∗∗ −0.307
∗∗ −0.300

∗∗ −0.386
∗∗ −0.426

∗∗ −0.211
∗∗ −0.116

∗∗ 0.107∗∗ 0.316∗∗ 0.324∗∗

n 627 624 607 584 605 607 606 607 620 623 584 622
NO2−N 1 0.659∗∗ −0.308

∗∗ −0.082
∗ −0.242

∗∗ −0.375
∗∗ −0.360

∗∗ −0.374
∗∗ −0.012 0.168∗∗ 0.442∗∗ 0.447∗∗

n 625 608 585 606 608 607 608 621 624 585 623
NH4+NH3

1 −0.246
∗∗ −0.094

∗ −0.008 −0.438
∗∗ −0.388

∗∗ −0.318
∗∗ −0.035 0.170∗∗ 0.303∗∗ 0.414∗∗

−N
n 606 583 604 606 605 606 619 622 582 620
NO3+HNO3

1 0.481∗∗ 0.344∗∗ 0.521∗∗ 0.411∗∗ 0.377∗∗ −0.312
∗∗ −0.459

∗∗ −0.530
∗∗ −0.557

∗∗

−N
n 580 604 606 604 605 604 606 566 603
NO3−N 1 0.427∗∗ 0.329∗∗ 0.329∗∗ 0.148∗∗ −0.317

∗∗ −0.378
∗∗ −0.407

∗∗ −0.413
∗∗

n 579 581 579 580 583 584 545 582
NH4−N 1 0.490∗∗ 0.396∗∗ 0.360∗∗ −0.135

∗∗ −0.175
∗∗ −0.261

∗∗ −0.191
∗∗

n 606 604 605 604 606 566 603
SO4− S 1 0.688∗∗ 0.541∗∗ −0.065 −0.265

∗∗ −0.445
∗∗ −0.458

∗∗

n 606 607 606 608 569 605
Cl− 1 0.619∗∗ 0.014 −0.182

∗∗ −0.372
∗∗ −0.418

∗∗

n 606 605 607 567 604
Na+ 1 0.047 −0.158

∗∗ −0.335
∗∗ −0.348

∗∗

n 607 609 569 605
T 1 0.481∗∗ 0.531∗∗ 0.443∗∗

n 622 583 618
RH 1 0.650∗∗ 0.589∗∗

n 585 621
UVR 1 0.757∗∗

n 582
Solar

1
radiation

n – number of measurements; ∗ – correlation significant at the 0.05 level; ∗∗ – correlation significant at the 0.01 level.
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between PNC, meteorological parameters and trace gases are presented in
Table 2. No strong correlation is found between NH4-N and T . Nevertheless,
there are statistically significant but weak correlations between PNC and
nitrogen oxides, RH and UVR.

The Spearman correlation coefficients between Cl− and SO4− S were
moderately good (0.68). Because SO4− S is emitted from ships, a moderate
correlation was expected with these pollutants, whereas there was a poor
correlation between Na+ and Cl− as these ions originated from the sea.
Similarly weak correlations were reported by Bukowiecki et al. (2002)
between CO and ultrafine particle number concentrations.

4. Summary and conclusions

Two-year measurements of aerosol particle number concentrations were
carried out in the south-eastern Baltic Sea region (Preila, Lithuania)
during 2008–2009. The monthly mean variation of PNC showed high mean
concentrations during the summer and early spring and low concentrations
during winter. The long-range or regional transport of smoke emitted by
wildfires had a strong impact on total aerosol number concentrations in
Lithuania in the early spring. The lowest monthly PNCs were recorded
during November 2008 (1500± 900 cm−3) and the highest ones during June
2008 (4500± 900 cm−3).
Variability in observed aerosol characteristics was found to coincide

with changes in air mass source region, as indicated by back trajectories.
The PSCF results for the marine environment showed that the Preila site
is on an air parcel route in which PNCs are carried out over the Baltic
Sea (17.9%) and southern Europe (39.3%). Principal Component Analysis
confirmed that variations in the PNC diurnal patterns were due mainly to
road traffic and combustion, as indicated by the high correlation between
the concentrations of nitrogen oxides and the number concentrations of
particles. Neglecting noise in the analysis, this correlation explains 46% of
the total variance of the data. PCA clearly showed that PNC also depended
strongly on UVR. In contrast to PC1, PC2 showed high loadings of Na+,
Cl−, precipitation (2008) and wind speed (2009). This suggests that this
component represents a general degree of marine influence.

The results of Fourier and wavelet transform analysis indicated that the
most important variations in the data series were represented by periods
of 4, 6–7, 11, 16 to 23 days, which could be attributable to synoptic scale
fluctuations. For the entire period of the experiment the most significant
aspect is the diurnal variation of particle number concentration. However,
as the cold season approaches, the amplitudes of 1- and 2-day oscillations
decrease significantly and become less pronounced.
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(submicron) aerosol size distributions, Atmos. Chem. Phys., 11 (24), 12567–
12578, http://dx.doi.org/10.5194/acp-11-12567-2011.

Delfino R. J., Staimer N., Tjoa T., Gillen D. L., Polidori A., Arhami M., Kleinman
M.T., Vaziri N. D., Longhurst J., Sioutas C., 2009, Air pollution exposures and
circulating biomarkers of effect in a susceptible population: clues to potential
causal component mixtures and mechanisms, Environ. Health Persp., 117 (8),
1232–1238, http://dx.doi.org/10.1289/journla.ehp.0800194.
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Facchini M.C., Decesari S., Fuzzi S., Gehrig R., Hansson H. C., Hüglin C.,
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