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Abstract

We measured depth profiles of underwater PAR (photosynthetically active ra-
diation) together with optically derived turbidity and chlorophyll fluorescence
values at 11 sampling stations in the South-West Finnish archipelago of the Baltic
Sea. The data were collected eight times during the spring, summer and early
autumn of 2010. The results illustrate complex and multidimensional variations
in the euphotic depth, which was subject to fourfold and twofold differences
in the geographical and seasonal dimensions respectively. The spatio-temporal
inconsistency and non-linearity of the seasonal euphotic depth variation calls for
further studies at different spatial and temporal scales.

* The study was financially supported by Kone Foundation, EU Life+ (FINMARINET
project), and the Academy of Finland (project 251806).

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/
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1. Introduction

Many biological functions in aquatic ecosystems are driven by solar
radiation penetrating into the water. Photosynthetically active radiation
(PAR, 400–700 nm) – which approximately corresponds to visible light – is
crucial to aquatic primary production, for example. Underwater radiation
is attenuated as a function of distance by two mechanisms: absorption and
scattering (Kirk 2011). The efficiency of these processes varies according to
the optical properties of the water, as natural waters contain, in addition
to water molecules, an assortment of suspended and dissolved substances.
Consequently the quantity and quality of the underwater light vary in space
and time, induced by changes in the concentrations of these substances
(Dera & Woźniak 2010, Suominen et al. 2010, Woźniak et al. 2011).
Thus, underwater light availability must be examined as a multidimensional
phenomenon with several spatial (including both horizontal and vertical
dimensions) and temporal scales.

In clear oceanic waters, the PAR attenuation is dominated by the
seawater itself, and additionally, if present, by chlorophyll and other
photosynthetic pigments of living phytoplankton. The optical properties of
coastal waters are usually also influenced by the concentrations of suspended
particulate matter (SPM) and coloured dissolved organic material (CDOM)
(Kirk 2011). In the Baltic Sea, the exceptionally high CDOM concentration
places particular demands on optical water research in the area, as many
models and algorithms developed elsewhere are not directly applicable
(Kratzer et al. 2003, Darecki & Stramski 2004).

The layer in which photosynthesis takes place can be studied by assessing
the ratios of photoautotrophic production and heterotrophic consumption
within a given time-scale. The compensation depth is the depth at which
primary production is equal to all community loss processes, and the critical
depth refers to the lower limit of the water column at which vertically
integrated productivity balances out integrated losses (Sverdrup 1953, Tett
1990, Kirk 2011).

The thickness of the photosynthetically active water layer can also be
estimated indirectly on the basis of underwater light conditions. This is
usually done by defining the thickness of the euphotic zone, limited by
the euphotic depth, at which 1% of the sea surface PAR remains (Kirk
2011). The absolute amount of PAR at this 1% depth varies somewhat
according to the instantaneous conditions, such as cloudiness and solar
zenith angle (e.g. Dera & Woźniak 2010). Also, the minimum radiation
requirement for photosynthesis varies among phytoplankton species (e.g.
Kirk 2011). Nevertheless, according to a study conducted in Finnish and
Estonian lakes, the depth at which 1% of the surface radiation remains
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corresponds well to the depth at which primary production approaches zero

(Reinart et al. 2000). Since the definition of euphotic depth based on 1%
radiation is commonly used in many underwater light field studies, and since

this depth is relatively easy and accurate to determine (Lee et al. 2007), it

is used to define the lower limit of the euphotic zone in this study, too.

We present the results of a broad, multidimensional field survey

quantifying the dynamics of the euphotic depth in a complex archipelago

environment of the Baltic Sea. So far, knowledge about the underwater
light field in the area has been based on Secchi depths or indirect estimates

according to concentrations of optical constituents. As far as we know, this

is the first attempt to quantify the light field in a more direct and accurate
way. We address the principal spatio-temporal variations in the euphotic

depth and PAR attenuation from a geographical perspective, emphasizing

their significance in the region’s environmental dynamism. The research
questions are: 1) what kind of changes take place in the underwater light

field during the growing season, and 2) are these changes geographically

and temporally consistent? Additionally, we compare these changes with the
changes in suspended sediment and phytoplankton concentrations estimated

in situ by optical sensors.

2. Material and methods

2.1. Study area and sampling scheme

A non-tidal marginal sea located in northern Europe, the Baltic Sea is

a brackish water basin that has very limited water exchange with the North

Sea, and which is partially ice-covered every winter. This study focuses on
the SW-Finnish archipelago, where thousands of islands make up one of the

largest archipelago areas in the world (Leppäranta & Myrberg 2009). The

sea surface openness decreases gradually from the outermost archipelago
towards the mainland. The water area is very shallow, 23 metres on average,

with the deepest points reaching 100 m. The varying bathymetry gives

rise to small sub-basins separated by shallow thresholds that restrict water
exchange, retaining turbid waters (Kirkkala et al. 1998, Erkkilä & Kalliola

2004, Suominen et al. 2010).

The water column is mixed vertically every spring and autumn, causing
the summer and winter thermoclines to disappear. The summer thermocline

typically lies at a depth of 15–20 m. The water salinity in the region varies

between 5.5 and 6.5, and there is no stable halocline. Wind, water inflow and
temporary currents form local, short-lived water layers of different densities

(Kirkkala 1998).
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Figure 1. The study area and the sampling stations

Our in situ measurement campaign comprised 11 sampling stations
covering a range of environmental settings, including inner, middle, and
outer archipelago zones; shallow and deep waters; and areas with high or
low human influence (Figure 1). The stations are located within an area
45 km by 40 km, with distances of 7–16 km separating adjacent stations.
With one exception, the measurements were made every third week from
late April to early October in 2010. Each station was visited eight times
during the field season.
The weather conditions during 2010 were variable, but rather typical of

the region. The preceding winter had been colder than average, but some
periods of April and May were warm. June was relatively cold. The surface
waters warmed up rapidly during the warm high summer season in July
and August, when several heat peaks occurred (FMI 2010). In July, mass
occurrences of cyanobacteria were abundant, but during the late growing
season their levels were low (The Baltic Sea Portal 2010).

2.2. Field measurements

Light measurements were made using LI-COR quantum sensors (LI-
COR Biosciences, USA), which measure the amount of radiation as
µmol s−1 m−2 in the 400–700 nm wavelength area. We used an underwater
spherical quantum sensor (model LI-193) that measures the scalar irradiance
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of PAR range from nearly all directions, and is therefore highly suitable for
photosynthesis studies (Kirk 2011). Scalar PAR measurements are also

less sensitive towards changes in the Sun’s altitude than measurements
of downwelling PAR (Stramska & Frye 1997). Determining the complete

spectrally resolved irradiance would be the most informative way of
measuring underwater PAR. However, if this is not possible, measuring the

entire PAR waveband as a spectrally integrated single reading (combining all

the wavelengths within 400–700 nm) is more suitable for studies addressing
photosynthesis than concentrating on only single wavelengths or very

narrow wavebands (Kirk 2011). In parallel to the underwater measurements,
a terrestrial quantum sensor (LI-COR model LI-190, cosine collector) was

used to monitor the changes in the incoming radiant flux above the sea
surface.

The measurements were made from a small (length ∼ 5 m) boat with
an outboard motor. During the measurements, the motor was turned off to

prevent false readings caused by water turbulence or exhaust emissions. The
measurements at each station took 10–15 minutes, during which time the

boat drifted freely. All the measurements were performed between 08:00 and
19:00 hrs, which was considered appropriate given the prevailing summer

solar angles at latitude 60◦N. Solar noon is around 13:30 hrs in this area.
All times are local daylight saving times.

We started by measuring the scalar irradiance of the PAR range just

below the sea surface in order to establish the amount of radiation entering
the water. The surface measurements were made by holding the instrument

underwater by hand, as close to the surface as possible without actually
breaking the surface, and recording several irradiance readings. After the

surface measurement, the recordings were made at one metre intervals. The
maximum depth of the profile was adjusted to the depth of each sampling

station, the shallowest station allowing only a 5 m measurement depth.
At deep water stations, the maximum measurement depth was 20 m. At

least three separate data recordings were logged from every depth using an
LI-1400 data logger (LI-COR Biosciences, USA).

We recorded water quality parameters with a YSI 6600 V2 multipa-

rameter sonde (YSI Inc., USA) simultaneously with the measurements of
the scalar irradiance of PAR. Their synchronized use was possible as the

underwater PAR sensor and the YSI sonde were fixed together in the same
instrument set. We measured chlorophyll fluorescence (sensor model YSI

6025) to estimate the amount of phytoplankton, and turbidity (6136) as
a proxy for the concentration of suspended solids. Both parameters were

measured in situ by optical sensors. The turbidity sensor emits near infrared
radiation and registers the amount of light scattered by the particles in the
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water. Similarly, the chlorophyll sensor emits blue light (a peak wavelength
of approximately 470 nm) and measures the red wavelengths that are re-
emitted by the fluorescence of photosynthetic pigments (YSI 2009). These
are commonly used proxy parameters even though the correlation between
turbidity and total suspended solids varies somewhat according to changes
in the properties of the particles (e.g. size and shape) (Minella et al. 2008);
moreover, besides chlorophyll, phytoplankton species also contain varying
amounts of other photosynthetic pigments (Kirk 2011). The data were saved
in a hand-held data logger (YSI 650MDS) using a recording interval of two
seconds. The multiparameter sonde measures the depth of the instrument,
which enables very accurate depth profiling.

The optically derived readings of the YSI sonde should be controlled
by laboratory analyses of water samples. The sonde used in this study was
calibrated during a previous research campaign conducted in the same sea
area, and the experience gained from those measurements supports the use
of optical sensors (Suominen et al. 2010), which enable a large number
of samples essential for geographical studies of water quality parameters,
to be taken. Therefore, we did not repeat the laboratory control with
our optical data; hence, the chlorophyll concentration RFU (chlorophyll,
Relative Fluorescence Units) and turbidity NTU (turbidity, Nephelometric
Turbidity Units) values reported in this study are not regarded as absolute
concentrations. Instead, they are internally coherent relative values that
allow the spatio-temporal comparisons to fulfil the needs of this study.

2.3. Data processing

The levels of the scalar irradiance in the PAR range at the different
measurement depths were defined by first removing the outliers, if they
existed, and then computing the average of the remaining readings. The
outliers, identified as values that deviated by more than 20% from the
median of the particular depth, occurred most often in the uppermost
part of the water column and were predominantly caused by wave action
(fluctuations in the light level due to the focusing effect, and difficulties in
holding the sensor immediately underwater when measuring below-surface
values in rough sea conditions). The averaged absolute PAR values were
then calibrated using the incoming solar flux above the sea surface as
a reference. The reference level, defined separately for each PAR profile,
was the level of solar radiation measured with the terrestrial sensor at the
time of the below-surface measurement. The amount of increase or decrease
in incoming radiation was assumed to increase or decrease the underwater
readings by the corresponding percentage. After this calibration, for each
depth, the corrected values of PAR (expressed as µmol s−1 m−2) could be
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converted to relative values representing the amount of radiation remaining
(in per cent) from the below-surface level. The lower limit of the euphotic
zone was determined as the depth to which 1% of PAR penetrated.
The attenuation efficiency in the water was quantified by calculating

K(PAR), which is the attenuation coefficient for the total spectrum of PAR
expressed in units of m−1. The coefficients were defined by plotting the
natural logarithms of the absolute PAR values against their measurement
depths and computing the slope of the resulting line (Kratzer et al. 2003,
Pierson et al. 2008). These coefficients were defined according to the
attenuation profiles within the euphotic zone, and thus represent the
average diffuse attenuation within the zone (Lee 2009). Furthermore, the
attenuation coefficients per metre were calculated according to

Km(PAR) =
ln(I1/I2)

Z2 − Z1
,

where I1 and I2 are the respective measured underwater light intensities at
depths Z1 and Z2.
The proxies for suspended solids and phytoplankton concentrations were

averaged for each depth from six consecutive readings of the original data
measured with the YSI sonde’s turbidity and chlorophyll sensors (see also
Suominen et al. 2010). Negative values, slightly below zero, resulting from
the sensors’ inability to detect extremely low values, were converted to 0.
When comparing the stations with each other, we used averaged water
quality values from 1 to 5 m, as this is the maximum range covered in
all the depth profiles.
We used hierarchical cluster analysis to classify the sampling stations in

the SW-Finnish archipelago according to their optical water quality. The
input data included each station’s euphotic depths, and the averages of in
situ measured chlorophyll fluorescence and turbidity, using data from all
eight measurement weeks separately. We used linear regression analysis to
identify the importance of the two measured attenuating components to the
attenuation efficiency in the surface waters of the three optical zones.

3. Results

The attenuation profiles revealed major differences among the sampling
stations in general but also among the sampling dates of the respective
stations (Figure 2). The minimum, maximum and average attenuation
coefficients (K(PAR)) covering the euphotic zones were 0.25, 1.73 and
0.57 m−1 respectively. The vertical diffuse attenuation coefficient also
varied within the profiles, as in less than half of the cases the log-linear
plots resulted in straight lines. Straight lines would have indicated optical
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Figure 2. Examples of actual PAR attenuation profiles from the surface to the
euphotic depth (note: log-linear scales). The sampling station and week are
indicated for each profile. MMA380 shows the highest and KORP110 the lowest
attenuation in our data

homogeneity of the water masses. Generally, the light attenuated more
efficiently near the surface than in the deeper layers of the euphotic zone.
The seasonal and geographical variability of light attenuation induced

substantial variations in the euphotic depth (boxplot in Figure 3). The
euphotic depth varied from 2.8 m to 18.0 m within the 88 profiles, with
an average of 9.6 m. Two major patterns were detectable in the euphotic
depth dynamics. First, according to the general spatial trend, the euphotic
depth increased from the inner archipelago towards the outer archipelago.
The difference between the clearest and the most turbid station was
approximately fourfold in any sampling week. Secondly, the general seasonal
development in the euphotic depth showed distinctive periodicity: low
values in early spring, an increase in late spring, a decrease in high summer,
an increase in late summer and a decrease in autumn.
Comparisons made between the individual stations revealed major

dissimilarities in both the spatial patterns and the temporal dynamics of
the euphotic depth (map in Figure 3). At some stations, no distinctive
decrease in the euphotic depth was observed in the autumn. At the most
turbid stations of the inner archipelago, no clear seasonal pattern was found
in the euphotic depth development. It is noteworthy, however, that even
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Figure 3. Spatio-temporal variation of euphotic depth shown on a map, where
individual euphotic depths are plotted as time series graphs at the station locations
(for exact station locations, see Figure 1). The boxplot shows the respective
temporal variation of euphotic depth at the 11 sampling stations

at the stations where the seasonal variations were obvious, the timing and
magnitude of these changes differed – even between adjacent stations. In
other words, the development of the euphotic depth, meaning increases and
decreases in light penetration, did not proceed simultaneously throughout
the study area. In absolute numbers, the euphotic depth ranges were,
in general, greatest in the outer archipelago, where the underwater PAR
levels were the highest. However, the relative differences between the
highest and lowest depth measured at one station during our field campaign
were approximately twofold at all the stations throughout the study
area.

Of the two water quality parameters measured, the chlorophyll flu-
orescence changed simultaneously with the euphotic depth in the outer
archipelago, while the impact of the changes in turbidity was more evident
close to the mainland (maps in Figure 4). The optically estimated proxy for
phytoplankton concentration usually peaked during the first measurement
week, but then decreased, to slightly grow again in high summer. Temporal
changes in the turbidity estimates were more irregular, the most notable
patterns being geographical rather than temporal. Turbidity was strongly
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Figure 4. Variations of a) turbidity and b) chlorophyll fluorescence with euphotic
depths (for timings, see Figure 3; for exact station locations, see Figure 1). The
scatter plots and correlation coefficients (Pearson) show the relations between
the parameters: each point represents the average value of the water quality
variable (1–5 m depth) and the corresponding euphotic depth at the different
sampling stations and weeks. The stations are classified into three archipelago
zones according to the hierarchical cluster analysis; black dots represent the
innermost archipelago zone, grey dots the middle zone, and crosses the outermost
zone

correlated with euphotic depth, but the correlation between chlorophyll
fluorescence and euphotic depth was somewhat weaker (scatter plots
in Figure 4). The correlation between the in situ measured chlorophyll
fluorescence and turbidity was, as such, weak (R2 value 0.288).

The hierarchical cluster analysis grouped the stations into three op-
tical zones: the innermost zone with the most turbid waters (MMA380,
TURM275), the outermost zone with the clearest waters (KORP110,
NAU12, NAU10 and KORP39), and the middle zone between these
extremes. The ability of turbidity values to explain the variation of the
attenuation efficiency was high in the innermost archipelago zone, but
decreased towards the middle and outermost zones (R2 values 0.913, 0.781
and 0.436 respectively). Conversely, the role of estimated chlorophyll con-
centration increased towards the outer archipelago (0.108, 0.413 and 0.511
respectively). The combined explanatory power of these two parameters
(data not shown) decreased with distance from the mainland. All the results
are statistically very significant (p-values 0.000), except in the case of
chlorophyll fluorescence in the inner zone (0.213).
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4. Discussion

Our results quantify strong multidimensional variations in the efficiency
of underwater light attenuation and the euphotic depth within the studied
coastal sea. The temporal changes in the euphotic depth are approximately
twofold, and the geographical differences are fourfold. Previous studies
from the Baltic Sea coasts have revealed patchiness in the distribution
of optical water quality parameters (e.g. Giardino et al. 2010, Suominen
et al. 2010). This patchiness is also visible in our results, which link water
quality variations to variability in the underwater light field. These results
highlight the optical complexity and dynamism of this coastal archipelago
area.

Of the two water quality parameters that we measured, turbidity,
the proxy for suspended particulate matter, appears to have a stronger
influence on the water optics in the inner archipelago, whereas chlorophyll
fluorescence, the proxy for phytoplankton concentration, plays a strong
role in the outer archipelago. However, the remarkably high turbidity
near the mainland may simply be overriding the effects of attenuation by
phytoplankton. Additionally, since the chlorophyll sensor is not designed to
detect cyanobacteria, the overall effects of the summer blooms are probably
underestimated.

CDOM is often referred to as the primary absorber of PAR in the Baltic
Sea (e.g. Kowalczuk et al. 2005, 2010). In coastal waters, the main sources
of CDOM are river discharges, bottom sediments and biological production,
whereas photo-oxidation processes at the surface act as a CDOM sink
(Boss et al. 2001). In the Baltic Sea, there is great seasonal variability
in CDOM characteristics, concentrations typically reflecting changes in
river runoff (Kowalczuk et al. 2010, Asmala et al. 2012). Consequently,
as Finnish rivers tend to carry relatively high CDOM concentrations, the
highest CDOM attenuation efficiencies of Finnish coastal waters are found
close to the river mouths (Asmala et al. 2012). The importance of CDOM
in the total attenuation process is lower in highly turbid coastal waters,
where the concentrations of other substances are high (Lund-Hansen 2004).
This could explain why, in the innermost archipelago, suspended solids and
phytoplankton are estimated to have a greater combined effect on total
attenuation than in other parts of the study area. The lower coefficient of
determination in clearer waters suggests a stronger dominance of CDOM
absorption.

The SW-Finnish archipelago acts as a mixing zone for the runoff from the
mainland and the water flow from the surrounding pelagic areas. From time
to time, the euphotic depth is affected by a momentary surface layer flow
event, rather than by stable local conditions. Occasional currents and the
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amalgamation of water masses may give rise to radical changes in surface
water quality even within short time periods (Erkkilä & Kalliola 2004).
More frequent measurements and a denser sampling network would be
needed to detect such changes, yet in situ sampling will never be sufficient to
detect all the relevant seawater changes in time and space (Sathyendranath
& Platt 1990).
Due to the complex spatio-temporal variation of the optical constituents,

we discourage the use of simplified mean values describing the underwater
light field in the coastal waters of the Baltic Sea. For instance, using the
average euphotic depth of this study (9.6 m) as a static input variable in
ecological models would be a harsh oversimplification, and much of the
observed variation (range 2.8–18.0 m) would be lost as a result.

Our study shows that a thorough understanding of the dynamic
underwater light field is needed in the parameterization of underwater
optics in coastal waters. Alvarez-Cobelas et al. (2002) expressed concern
about the common practice of measuring optical properties of lakes only
once a year: they pointed out that one measurement from one site at
one time did not enable the underwater light field of the whole lake to
be properly characterized. According to our results, this notion is also valid
in the coastal environment. But again, more extensive datasets may be
problematic if they are spatially or temporally biased. Moreover, no great
advantage is to be gained from using datasets with good coverage in only
one dimension, be this geographical or seasonal, as they do not consider the
multidimensional dynamics of the underwater light field. In conclusion, we
urge caution whenever any aspect of underwater solar radiation is used as
a parameter in models of the coastal marine environment.

5. Conclusions

The underwater light field in the archipelago coastal waters of SW
Finland is a dynamic and complex environmental variable, which is crucially
important to the coastal ecosystem. The efficiency of light attenuation
varies in many dimensions and scales across space and time. Summarizing,
the geographical differences in euphotic depth remained about fourfold
within our study area for the duration of the growing season, whereas
the seasonal variability within each sampling station was approximately
twofold. Even though the amount of underwater PAR generally increased
from the relatively turbid waters of the inner archipelago towards the outer
archipelago, where the temporal fluctuations are more strongly linked to
the phytoplankton concentration, the internal dynamism within both the
study area and period varied rather a lot. The light attenuation efficiency
also varied in the vertical dimension. Future attempts at water quality
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assessment and ecological modelling should increasingly acknowledge the
complex spatio-temporal dynamics of the underwater light field in the
coastal waters of the Baltic Sea.
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