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Abstract

The quasi-synoptic view available from satellites has been broadly used in recent
years to observe in near-real time the large-scale dynamics of marine ecosystems
and to estimate primary productivity in the world ocean. However, the standard
global NASA ocean colour algorithms generally do not produce good results in the
Baltic Sea. In this paper, we compare the ability of seven algorithms to estimate
depth-integrated daily primary production (PP, mg C m−2) in the Baltic Sea.
All the algorithms use surface chlorophyll concentration, sea surface temperature,
photosynthetic available radiation, latitude, longitude and day of the year as input
data. Algorithm-derived PP is then compared with PP estimates obtained from

* This work was supported through the SatBałtyk project funded by the European
Union through the European Regional Development Fund, (contract No. POIG.01.01.02-
22-011/09 entitled ‘The Satellite Monitoring of the Baltic Sea Environment’).
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14C uptake measurements. The results indicate that the best agreement between
the modelled and measured PP in the Baltic Sea is obtained with the DESAMBEM
algorithm. This result supports the notion that a regional approach should be used
in the interpretation of ocean colour satellite data in the Baltic Sea.

1. Introduction

The quasi-synoptic view available from satellites makes it possible to
observe the large-scale dynamics of marine ecosystems in near-real time. It
is worth using these observations to quantify oceanic primary productivity
(PP). Comparable, large-scale, observations cannot be achieved solely from
ship-based PP measurements. Therefore, special efforts have been made
in recent years to develop and evaluate algorithms for estimating primary
productivity from satellite remote sensing products such as surface Chl a
concentration (Chl), sea-surface temperature (SST) and photosynthetically
available radiation (PAR) (e.g. Antoine et al. 1996, Behrenfeld & Falkowski
1997, Campbell et al. 2002, Carr et al. 2006, Friedrichs et al. 2009,
Saba et al. 2011). Another way of assessing large-scale PP is to use
coupled biogeochemical (BG) marine numerical models. With the enhanced
computational capabilities of modern computers, BG models can now be
run at appropriate horizontal and vertical resolutions to provide large-
scale daily estimates of PP. Calculating accurate PP estimates over large
areas is a crucial step in BG models, which are also used for assessing
higher trophic dynamics, including zooplankton and even fish life cycles (e.g.
Kiefer et al. 2011). BG models parameterize photosynthesis in much the
same way as satellite PP algorithms. The main difference between the two
approaches, however, is that satellite algorithms require satellite estimates
of surface chlorophyll and temperature as input variables (e.g. O’Reilly
et al. 1998, 2000, McClain 2008), whereas BG models explicitly compute
these fields (although sometimes BG models can also assimilate satellite
surface chlorophyll and SST data; see e.g. Gregg 2008). In addition, BG
models simulate concentrations of nutrients, detritus, and often more than
one functional or size groups of phytoplankton and zooplankton. They
also incorporate mechanistic knowledge of nutrient uptake and physical
transport of nutrients and biomass – information that is not derived directly
from remote sensing PP algorithms.

Marine primary productivity is a large and highly variable component
of the global carbon cycle and drives the oceanic biogeochemical cycles
of other major chemical elements such as oxygen, iron, silicon, nitrogen
and phosphorus. PP estimates from BG models and/or satellite data
have been used for quantifying the air-sea flux of carbon dioxide (e.g.
Bianchi et al. 2005), export production (e.g. Boyd & Trull 2007) and the
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production of climate-active gases such as dimethyl sulphide (e.g. Larsen

2005), as well as in research into the consequences of climate change for

phytoplankton growth (Behrenfeld et al. 2006, Doney et al. 2009). Since PP

estimates are crucial to our understanding of many vital oceanic processes,

it is extremely important to validate the performance of the various PP

algorithms with observations and to elucidate the reasons underlying the

similarities/differences in model outputs. Such comparisons were carried

out recently as part of the Primary Productivity Algorithm Round Robin

(PPARR) series, funded by NASA (Campbell et al. 2002, Carr et al. 2006,

Friedrichs et al. 2009, Saba et al. 2011). This activity provided an example

of how the performance of primary productivity models could be compared.

Such comparative results are valuable for those who wish to choose a single

PP model to implement in a given study, and also to PP model developers,

as they continue to improve their model formulations.

The PP models evaluated during PPARR were constructed with the aim

of providing the best PP estimates at a global scale (e.g. Friedrichs et al.

2009, Saba et al. 2011). PPARR publications have stressed the fact that

such global PP algorithms can produce significant over- or underestimates

of primary productivity at regional/local scales (e.g. Campbell et al. 2002).

At regional scales, regional algorithms should be derived for more accurate

PP estimates. One example of such a challenging region is the Baltic

Sea. It has been shown in the past that the standard NASA ocean colour

algorithms generally do not produce good results in the Baltic Sea (e.g.

Darecki & Stramski 2004). Consequently, significant efforts have been made

to develop regional satellite remote sensing algorithms for the Baltic Sea

(e.g. Woźniak et al. 2007, 2008, Darecki et al. 2008). The main objective

of this paper is to compare the Baltic Sea PP DESAMBEM algorithm (e.g.

Woźniak et al. 2008, Darecki et al. 2008) with six other PP models. Model-

based PP estimates are also compared with in situ PP measurements. Our

purpose is to improve the understanding of the similarities and differences

between the models, and to verify which of them provides the most reliable

PP estimates in the Baltic Sea region. In the near future, we plan to use

these best models to study biological-physical interactions in the Baltic Sea.

The comparative results presented in this paper will also be of interest to

others who wish to implement satellite estimates of PP in the Baltic Sea

region. In particular, this information will be of use to the participants in

the SatBałtyk project (Satellite Monitoring of the Baltic Sea Environment,

www.iopan.gda.pl/projects/SatBaltyk), who are working on improving the

remote sensing PP DESAMBEM model formulations for the Baltic Sea.
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2. Methods

2.1. Models

There is a range of different PP modelling approaches (see Campbell
et al. 2002, Carr et al. 2006, Friedrichs et al. 2009, Saba et al. 2011
for model overviews and references). Model types have been broadly di-
vided into wavelength- and depth-integrated (WIDI), wavelength-integrated
and depth-resolved (WIDR), and wavelength- and depth-resolved models
(WRDR) (Friedrichs et al. 2009). For our purpose we selected seven
models. Four of them are satellite PP algorithms, of which only the
DESAMBEM model belongs to the WRDR type, and only DESAMBEM is

a regional model developed specifically for the Baltic Sea (Woźniak et al.
2008, Darecki et al. 2008). Additionally, we used three BG models in
our calculations, two of which have frequently been used as regional Baltic
Sea models (Neumann et al. 2002, Ołdakowski et al. 2005, Neumann
& Schernewski 2005, 2008). Although the third one has been used for
global simulations (Moore et al. 2002a,b, Moore et al. 2004), it is currently
being adapted to Baltic Sea conditions by the members of our team. Note
that the present comparison exercise did not attempt to assess the overall
skill of the biogeochemical models; rather, its objective was to compare the
potential of the BG models to accurately estimate PP, enabling them to be
compared with satellite PP algorithms. In all of our calculations presented
in the following sections we used the relationship between Chl and the
spectral diffuse vertical attenuation coefficient for downwelling irradiance
(Kd(λ)) taken from the DESAMBEM algorithm. Additionally, we assumed
vertically uniform Chl in the water column in all of the calculations. This
ensured that we had consistent light fields, water temperatures and Chl a
concentrations in all our synthetic model situations. In all of the BG
calculations carried out in this study we assumed a constant value of 30 for
the C/Chl ratio. The selection of this particular value of the C/Chl ratio
was justified by data collected in the Baltic Sea by IO PAN (Ostrowska,
personal communication).

As our data sets did not include any information on nutrient limitation,
we assumed in the present comparison that PP was regulated only by
light and temperature. A simple, first-order, approach for assessing
potential nutrient limitation is to identify the periods of time when nutrient
concentrations are below the theoretical half-saturation constant (Ks).
Though crude, this approach has often been used to determine which
nutrient is the most limiting in the Baltic Sea (e.g. Moisander et al. 2003).
Note, however, that the concentrations of dissolved inorganic nitrogen (DIN)
and dissolved inorganic phosphate (DIP) may be low and the primary
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production and phytoplankton biomass high, if the regeneration and/or
inflow of DIN and DIP are high. Therefore, the approach to nutrient
limitation based on nutrient concentrations is probably too simplistic, and
there are still many inherent uncertainties in our understanding of when and
what nutrients are limiting PP in a given season and region of the Baltic
Sea. Nevertheless, the prevailing paradigm is that (e.g. Moisander et al.
2003): (1) the open Baltic Sea is N-limited at the end of the summer; (2) this
favoursN2-fixing cyanobacterial blooms; and (3) theN2-fixing cyanobacteria
are P-limited. It is in this context that we decided to test whether the
relationship between calculated and measured PP improved if we rejected
summer and early autumn data, i.e. if the data collected between 15 May
and 1 October of each year were excluded from the analysis.

Model 1. The DESAMBEM algorithm

The set of DESAMBEM algorithms (Woźniak et al. 2004, 2008, Darecki
et al. 2008) makes it possible to estimate spatial distributions of numerous
parameters and quantities of the Baltic Sea ecosystem from an upward flux
of radiation recorded by the optical sensors operating on satellites. With
the aid of these algorithms it becomes possible to derive information on sea
surface temperature (SST), water transparency, radiation balance at the sea
surface and in the upper layers of the atmosphere, the intensity of UV radi-
ation, the Photosynthetically Available Radiation (PAR), concentrations
of chlorophyll and other pigments, and the efficiency of photosynthesis.
It is important to remember that the PP model in the DESAMBEM
algorithm differs from the other PP models used in this study, as the
DESAMBEM algorithm is the only model based on parameters that describe
phytoplankton photophysiology. With the DESAMBEM algorithm, PP is
computed as a function of irradiance, maximum photosynthetic quantum
yield, photosystem II functional absorption cross-section, turnover time
for carbon fixation, and pigment-specific light absorption. In our PP
calculations we used the version of the algorithm described in Woźniak
et al. (2008), assuming that the Chl a concentration, surface PAR and SST
are given as input data.

Model 2. The Vertically Generalized Production Model (VGPM)

The Vertically Generalized Production Model (VGPM), developed by
Behrenfeld & Falkowski (1997), is one of the most widely known and used
WIDI PP models; it is one of the standard MODIS algorithms. This
model estimates daily primary production in the euphotic layer from surface
Chl a concentration, PAR, day length, euphotic depth, and the optimum
photosynthetic rate (PB

opt) of phytoplankton in the water column. The
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estimation of primary productivity in this model depends largely on the
empirical relationship between SST and PB

opt, represented by a seventh-order
polynomial function. In our calculations the euphotic depth was estimated
using the DESAMBEM formula for the relationship between Chl andKd(λ).

Model 3. The Vertically Generalized Production Model with
Eppley parameterization of the temperature effect (VGPM/E)

This model differs from Model 2 in that PB
opt is estimated as an

exponential function of the water temperature following Eppley (1972).

Model 4. The Vertically Generalized Production Model modified
by Kameda & Ishizaka (VGPM/KI)

This VGPM variant formulates PB
opt as a function of SST and Chl

(Kameda & Ishizaka 2005). The model is based on the assumptions that
changes in chlorophyll a concentration depend on the relative abundance
of large phytoplankton and that the chlorophyll-specific productivity is
inversely proportional to phytoplankton size.

Model 5. The Baltic Sea Ecosystem Model (ERGOM)

This BG model, coupled to the Baltic Sea circulation model, has been
successfully used to simulate many processes in the Baltic Sea (Neumann
et al. 2000, 2002, 2005, 2008). The biogeochemical model consists of nine
state variables and describes the nitrogen cycle. Primary production is
due to three functional phytoplankton groups: diatoms, flagellates and
cyanobacteria. Diatoms represent larger cells that grow fast in nutrient-
rich conditions. Flagellates represent smaller cells with an advantage at
lower nutrient concentrations during summer conditions. The cyanobacteria
are able to fix atmospheric nitrogen, and phosphate is their only limiting
nutrient. The role of light for primary production is parameterized in
ERGOM according to Steele (1962). The value of the optimum irradiance
Iopt is adopted from Stigebrandt & Wulff (1987), the minimum value
Imin = 25 W m−2 was estimated from measurements in the Baltic Sea.
Because diatoms develop in early spring, temperature does not limit their
PP in the model. Flagellates, however, reach their highest abundances
in summer and benefit from moderate temperatures, which is reflected in
their temperature dependence included in the model. The growth rate
of cyanobacteria has an even stronger dependence on water temperature.
The vertical attenuation of light is parameterized in the original model in
a very simple way, as the sum of attenuation by water and attenuation
proportional to Chl. In our calculations we used the DESAMBEM formula
for the relationship between Chl and Kd(λ).
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Model 6. The Production and Destruction of Organic Matter
Model (ProDeMo)

The ProDeMo model is also a 3D coupled hydrodynamic-ecological
model applicable to the entire Baltic Sea (Ołdakowski et al. 2005). The
model describes nutrient cycles (phosphorus, nitrogen, silicon) through the
food web with 15 state variables. The version of the model used in our
calculations includes two functional groups of phytoplankton: diatoms and
non-diatoms (Ołdakowski et al. 2005). The vertical attenuation of light
is parameterized in the original model as the sum of attenuation by water
and attenuation proportional to Chl. As in all the other cases, we used the
DESAMBEM formula for the relationship between Chl and Kd(λ). Note
that this model assumes a relatively strong dependence of the phytoplankton
growth rate on water temperature. Unlike in all the other models, PP is
strongly favoured by a specific range of water temperatures.

Model 7. The Biogeochemical Elemental Cycling (BEC) Ocean
Model

We used the version of the model described in Moore et al. (2002a,b),
which is a global BG model with four nutrients (nitrogen, phosphorus,
silicon and iron) and three phytoplankton groups (diatoms, diazotrophs
and a generic small phytoplankton class). Growth rates are limited by
available nutrients and/or light levels. A newer version of this model has
been developed more recently (Moore et al. 2004, Doney et al. 2009) and is
included in a coarse-resolution ocean component of the Community Climate
System Model (Yeager et al. 2006), forced by time-varying atmospheric
fluxes. In our calculations we used the DESAMBEM formula for the
relationship between Chl and Kd(λ).

2.2. Data sets

For evaluating the PP models we used the data set collected in the
Baltic Sea by IO PAN (Darecki et al. 2008) and by the Sea Fisheries
Institute (MIR). In total, this joint data set included 570 measured PP
values. In addition, we used the in situ global PPARR4 data (Saba
et al. 2011), comprising 1157 stations located in eutrophic and oligotrophic
oceanic waters. All the in situ PP data used in our paper were based
on 14C techniques (Longhurst et al. 1995, JGOFS 1996). Productivity
measurements were integrated to the 1% light depth to estimate water-
column-integrated PP.

It needs to be borne in mind that 14C-based estimates are subject to
errors (Peterson 1980, Fitzwater et al. 1982, Richardson 1991, JGOFS
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2002). The 14C incubation technique measures photosynthetic carbon

fixation within a confined volume of seawater, and there are no methods
for the absolute calibration of bottle incubations (e.g. Balch et al. 1992).

Furthermore, there is no universally accepted method for measuring and

verifying vertically integrated production derived from discrete bottle
measurements. For brevity, in this paper, we refer to 14C-based estimates

as ‘measured’ and to the differences between algorithm-derived and 14C-

derived estimates as ‘errors’. We have to remember, however, that both
estimates are subject to error.

2.3. Statistical measures

The formulas used for calculating the error statistics provided in the
Tables are as follows.

1) The absolute average error (AAE) is a quantity used to measure how

close model predictions (Pn) are to the observations (On). The absolute
average error was estimated according to the formula:

AAE =
1

N

N
∑

n=1

|On − Pn|. (1)

2) Bias (B) is defined as the mean difference between the modelled PP
(Pn) and the measured PP (On):

B =
1

N

N
∑

n=1

Pn −
1

N

N
∑

n=1

On = P̄ − Ō. (2)

3) The percentage of model bias (Pbias) was estimated as follows:

PBIAS = 100

∑N
n=1(Pn − On)
∑N

n=1 On

. (3)

4) The mean absolute percentage error (MPE) was calculated using the

following formula:

MPE = 100
1

N

N
∑

n=1

|
Pn − On

On
|. (4)

5) The root mean square error (statistical error) was calculated as:

RMSE =

[

1

N − 1

N
∑

i=1

(Pi − Oi)
2

]1/2

. (5)
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3. Results

3.1. Modelled PP as a function of light and temperature

Estimates of PP as a function of surface irradiance (PAR) and water
temperature calculated using all the models are shown in Figures 1–5.
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Figure 1. Water column integrated primary production (PP, mg C m−2)
estimated with the DESAMBEM algorithm as a function of downwelling irradiance
PAR (Einst m−2 day−1) for water temperatures of 5, 10 and 20◦C (plots in panels
a, c, e) and as a function of water temperature for surface PAR of 10, 40 and 70
Einst m−2 day−1 (plots in panels b, d, f). Chlorophyll concentrations of 0.1, 3.0,
5.0, and 9.0 mg m−3 are indicated by black circles, white circles, black triangles
and white triangles respectively
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Figure 2. Water column integrated primary production (PP, mg C m−2)
estimated with the following algorithms: VGPM (panels a and b), VGPM/E
(panels c and d) and VGPM/KI (panels e and f). PP is shown as a function
of water temperature for surface PAR of 10 Einst m−2 day−1 (plots a, c, e) and 70
Einst m−2 day−1 (plots b, d, f). Chlorophyll concentrations of 0.1, 3.0, 5.0, and
9.0 mg m−3 are indicated by black circles, white circles, black triangles and white
triangles respectively

In Figure 1, we present the results for the DESAMBEM algorithm. In

this case, because the DESAMBEM algorithm is of special interest to us,
we decided to show PP as a function of surface irradiance for specific
water temperatures (left-hand column in Figure 1) and as a function of
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Figure 3. As in Figure 2, but for calculations carried out with the ERGOM
model. The results are shown for large phytoplankton (panels a and b), small
phytoplankton (panels c and d) and blue/green algae (panels e and f)

water temperature for selected levels of surface PAR (right-hand column in
Figure 1). In all other cases, i.e. for calculations based on other models, PP
is shown for only two surface irradiances (10 and 70 Einst m−2 day−1)
as a function of water temperature (Figures 2–5). The results for the
ERGOM, BEC and ProDemo models are displayed separately for different
phytoplankton groups, as parameterized in the models.

The results shown in Figures 1–5 highlight the differences between the
models. (The vertical scales on Figures 1–5 vary because of the different
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Figure 4. As in Figure 3, but for calculations carried out with the ProDemo
model. The results are shown for large phytoplankton (panels a and b) and small
phytoplankton (panels c and d)

ranges of PP values in the models). In general, for the range of light
levels, Chl and water temperatures considered, the PP estimates achieve
the largest values in the global models (VGPM and BEC). Recall that the
VGPM model and its derivatives (VGPM/E and VGPM/KE) are designed
for use with remotely sensed ocean colour data, as is the DESAMBEM
algorithm. However, the application of any of the VGPM algorithms leads
to higher estimates of PP than when using the DESAMBEM algorithm,
particularly at higher light levels and water temperatures. Importantly,
the values of PP obtained with the original global version of the VPGM
algorithm (not shown here) are even greater than the values shown in
Figure 2, because the VGPM calculations are based on the standard global
Chl ocean colour product, which gives significant overestimates for the
Baltic Sea. In addition, the rate of increase of PP with concurrent increase
in water temperature in the VGPM and the VGPM/E models (results shown
in Figure 2) seems to be more pronounced when compared to the rate of
increase in the DESAMBEM model for the same conditions. For example,
for Chl = 5 mg m−3, surface PAR = 70 Einst m−2 day−1 and a water
temperature change from 0◦C to 20◦C, the VGPM model shows a three-
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Figure 5. As in Figure 4, but for calculations carried out with the BEC model.
The results are shown for large and small phytoplankton (panels a and b) and for
blue-green algae (panels c and d)

fourfold increase in PP, while with the DESAMBEM for the same conditions
PP increases less than twofold. There are also significant differences
in the PP temperature dependence between the DESAMBEM and the
biogeochemical models. In particular, for large phytoplankton (diatoms),
the ERGOM model assumes no dependence of PP on water temperature
but does include the effect of water temperature for small phytoplankton
cells. The BEC model (designed for phytoplankton simulations in the
global ocean) uses the same temperature dependence for PP of large
and small phytoplankton. Strikingly different temperature effects on
PP are prescribed in the ProDemo model (developed for simulating the
Baltic Sea ecosystem). In this case, in contrast to all the other models
considered here, maximum PP for large phytoplankton is reached at
a relatively low water temperature of about 5◦C (Figures 4a and b).
This parameterization of PP is quite different from other frequently used
temperature parameterizations and was most likely introduced into the
model in order to obtain better agreement between the observed in situ and
the simulated biomass of phytoplankton in the Baltic Sea. Note that the
temperature parameterization of PP most commonly used in the literature
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is probably the one derived by Eppley (1972). Eppley (1972) compiled

a database of culture studies in which growth rates of approximately
130 species or clones of phytoplankton were measured at a variety of

temperatures under 24 hours of continuous illumination and conditions of
nutrient sufficiency. When growth rates were plotted against temperature,

Eppley found that the data fell below an envelope, which was exponential in

shape. This exponential function has become known as the ‘Eppley curve’
and is routinely used to define the maximum attainable daily growth rate

under non-limiting conditions of light and nutrients in many phytoplankton

models (see also Brush et al. 2002). We are not aware of any phytoplankton
culture experiments that confirm the temperature dependence used in the

ProDemo model. Note also that, in comparison to the Baltic Sea BG

models, the global BG model used in our work (BEC model, Moore et al.
2002a,b) gives significantly higher PP estimates than the DESAMBEM

algorithm for large and small phytoplankton classes at high light levels

(70 Einst m−2 day−1) and water temperatures > 15◦C. In contrast, the
PP values for blue-green algae in the BEC model are significantly lower

than the PP values for blue-green algae in the ERGOM model at water

temperatures > 15◦C.

3.2. Comparison between modelled and measured PP data

In Tables 1, 2, and 3, we present comparisons between:

1) modelled and measured PP in the Baltic Sea during all seasons
(Table 1, all data, i.e. 570 PP stations);

2) modelled and measured PP in the Baltic Sea with data collected

between 15 May and 1 October of each year being omitted (Table 2); and

3) comparisons of modelled PP with PP estimates from the global PP

data set (Table 3).

The formulas used for calculating the error statistics are provided in the

Methods section.

It is clear from the results presented in Table 1 that the best agreement

between the modelled and measured PP in the Baltic Sea (when all

data points are considered, N = 570) is obtained using the DESAMBEM
algorithm. The error statistics for BG models improve somewhat if we

exclude the data collected between 15 May and 1 October (Table 2).

However, the error statistics in this case are also the best for the
DESAMBEM algorithm. The global remote sensing algorithms (VGPM,

VGPM/E, and VGPM/KI) significantly overestimate PP in the Baltic Sea.
Although the bias and PBIAS are significantly larger in the BG models

than in the DESAMBEM algorithm, these models show relatively high
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Table 1. Estimates of the absolute average error (AAE), bias, percentage of
model bias (Pbias), mean absolute percentage error (MPE), r

2 coefficient and root
mean square error (RMSE) obtained for comparisons of calculated water column
integrated primary production (PP, mg C m−2) with the Baltic Sea in situ data
set (all seasons, N = 570). The r2 indicates the coefficient of determination for the
linear regression

AAE Bias MPE [%] Pbias [%] r
2 RMSE

DESAMBEM 284.56 −75.41 64.26 −11.22 0.46 460.85

ProDemo large 969.65 748.25 295.42 111.35 0.20 1443.65

ProDemo small 443.40 −103.90 77.76 −15.46 0.17 664.28

ERGOM large 683.25 642.89 233.57 95.67 0.50 850.15

ERGOM small 738.32 699.19 212.79 104.10 0.47 952.07

ERGOM blue-green 534.90 −506.74 84.79 −75.41 0.11 772.50

BEC small large 825.16 789.73 229.26 117.53 0.45 1082.29

BEC blue-green 567.76 −566.81 81.83 −84.35 0.43 797.47

VPGM 1704.39 1695.92 405.05 252.39 0.38 2213.23

VGPM/KI 876.50 832.90 243.52 123.95 0.41 1129.62

VGPM/E 884.03 838.26 235.61 124.75 0.38 2582.96

Table 2. Estimates of the absolute average error (AAE), bias, percentage of
model bias (Pbias), mean absolute percentage error (MPE), r

2 coefficient and root
mean square error (RMSE) obtained for comparisons of calculated water column
integrated primary production (PP, mg C m−2) with the Baltic Sea in situ data
set (data collected between 15 May and 1 October have been excluded, N = 285).
The relevant data are shown in Figures 6 and 7

AAE Bias MPE [%] Pbias [%] r
2 RMSE

DESAMBEM 221.16 −133.34 79.77 −26.36 0.64 439.46

ProDemo large 1266.76 1245.95 474.02 246.27 0.54 1818.10

ProDemo small 408.56 −335.08 82.59 −66.23 0.12 693.81

ERGOM large 587.16 557.04 324.21 110.10 0.61 323.04

ERGOM small 453.37 406.23 247.54 80.30 0.59 624.97

ERGOM blue-green 500.00 −499.02 98.73 −98.63 0 814.17

BEC small large 512.79 475.46 268.24 93.98 0.60 696.47

BEC blue-green 434.35 −432.47 83.73 −85.48 0.58 734.77

VPGM 785.63 769.33 390.30 152.07 0.51 1082.62

VGPM/KI 441.99 370.34 258.95 73.20 0.52 621.15

VGPM/E 410.25 337.19 244.92 66.65 0.54 585.24
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Table 3. Estimates of the absolute average error (AAE), bias, percentage of
model bias (Pbias), mean absolute percentage error (MPE), r

2 coefficient and root
mean square error (RMSE) obtained for comparisons of calculated water column
integrated primary production (PP, mg C m−2) with the PP from the global data
set (Saba et al. 2011)

AAE Bias MPE [%] Pbias [%] r
2 RMSE

DESAMBEM 534.86 −526.35 84.36 −80.89 0.33 714.76

ProDemo large 591.97 −219.10 108.37 −33.67 0.24 858.25

ProDemo small 594.58 −580.98 90.66 −89.28 0.17 819.65

ERGOM large 356.34 −62.55 77.71 −9.61 0.42 484.85

ERGOM small 320.15 −163.08 64.31 −25.06 0.43 464.79

ERGOM blue-green 609.72 −607.54 92.02 −93.36 0.01 828.74

BEC large small 317.00 −88.92 67.14 −13.66 0.40 472.12

BEC blue-green 603.77 −603.68 91.27 −92.77 0.43 809.11

VPGM 395.15 73.63 89.49 11.31 0.29 601.56

VGPM/KI 299.89 −55.97 64.52 −8.60 0.38 462.22
VGPM/E 315.79 −13.50 68.08 −2.07 0.38 514.23

r2 coefficients for modelled PP by large and small phytoplankton and

measured PP. Relatively low r2 coefficients are noted for blue green algae.

The performance of the ERGOM and BEC models seems to be better than
that of the ProDemo model, which has a significantly larger bias and RMSE

than the other two BG models. The scatter of the data points for the
relationship between measured and calculated PP is shown in Figures 6

and 7. For brevity, we display only the results from the runs included in

Table 2 (without the data collected between 15 May and 1 October). It
seems that the DESAMBEM underestimates PP for the largest values of

measured PP. In our database there are only relatively few data points with

such high measured PP values, and at present it is impossible to speculate
on the reason for this discrepancy. We need to collect more PP data to

verify this issue. If this tendency is confirmed, we shall have to make

an adjustment to the DESAMBEM so that it can perform better in such
conditions. At present our PP database does not contain any information

about the dominant phytoplankton functional groups present in the water

column at the time the PP measurements were made. Therefore, it is
impossible to assign measured PP values to specific functional groups of

phytoplankton. We hope that in the near future, with further improvements
to the DESAMBEM, we shall develop a capability to derive information

about the phytoplankton community composition in the Baltic Sea from
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Figure 6. Comparison of model-estimated water column integrated primary
production (PP, mg C m−2) with in situ data collected in the Baltic Sea. The
statistical metrics are summarized in Table 1. The solid line indicates the Y = X

line
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Figure 7. As in Figure 6, but the comparison is for the BEC and ERGOM models
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ocean colour and that our new in situ PP measurements will be accompanied
by observations of phytoplankton functional types.

The comparison between the global PP data set and PP calculated with
our models (see Table 3) clearly indicates that the DESAMBEM model is
tuned to the Baltic Sea, but does not perform so well in the global scenario.
Comparison of Table 3 with Tables 1 and 2 shows that the performance
of PP models can be improved by applying the regional approach to PP
modelling in the Baltic Sea.

4. Discussion

The assessment of regional and larger-scale quantities characterizing
ecosystems in the ocean from a limited number of in situ data has been
a significant challenge in the past. In recent years, ocean colour remote
sensing has provided a powerful means of improving our understanding of
ocean biogeochemistry and ecosystems. Although some quantities critical to
the understanding of biogeochemical cycles and ecosystems are not directly
accessible to satellite detection, they can be assessed through a combination
of approaches. We are currently developing such an approach for the Baltic
Sea within the framework of the SatBałtyk project (Satellite Monitoring of
the Baltic Sea Environment, www.iopan.gda.pl/projects/SatBaltyk). Our
approach will be based on blending numerical ecosystem models with
satellite data products derived using regional algorithms. In this approach
we want to describe many important ecosystem functions, such as nutrient
cycling, carbon fluxes and oxygen dynamics. With this aim in mind it is
crucial that we accurately simulate rate processes as well as state variables.
The basic information needed in our approach is a reliable estimate of
primary production. In this paper, we have shown that in our future work
we can rely on the PP estimates from the DESAMBEM algorithm, because
they agree reasonably well with in situ PP determinations.

While biogeochemical models often produce realistic predictions of phy-
toplankton biomass, they can simultaneously underestimate or overestimate
phytoplankton production (e.g. Brush et al. 2002). This apparent paradox
is due to generally limited knowledge of phytoplankton loss processes (such
as respiration, flushing, sinking, and grazing by various size fractions of
zooplankton and benthic filter feeders). Such losses are characterized
by a large spatial and temporal variability. Many of the loss terms are
poorly constrained or need to be assumed a priori due to insufficient data
(or a complete lack of data) in the literature (e.g. Broekhuizen et al.
1995, Ebenhöh et al. 1995). Moreover, there are simply far more loss
processes operating in a system than can be included in any model, so crude
approximations are inevitable (e.g. Hofmann & Lascara 1998). As a result,
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parameter values are often guessed during the calibration of BG models in
order to achieve an acceptable fit between predicted and observed biomasses.
As simultaneous errors in production and loss rates can result in correct
estimates of biomass, we may remain unaware of the problems affecting
rate estimates. Since phytoplankton production occurs at the base of the
food web, the accurate prediction of phytoplankton production and biomass
is critical for making correct predictions of concentrations and processes
in the system. Incorrect estimates of phytoplankton production weaken
the conclusions drawn from models as well as their utility in management
applications. These arguments justify our interest in examining the way in
which existing BG Baltic models calculate phytoplankton production. Our
analysis shows that both the ERGOM and BEC models appear to provide
consistent results, the main difference between them being the way in which
blue-green algae are modelled. Both ERGOM and BEC calculate PP, which
is significantly correlated with measured PP, but they seem to overestimate
these measured PP values. We plan to use these two models with some
modifications in our future work.
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