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Abstract

The effect of angular structure differences between measured and best-fit analytical
phase functions of the equivalent backscattering ratio on calculated reflectance
values was studied and shown to be significant. We used a Monte Carlo radiative
transfer code to check the effect of choosing different analytical (several Fournier-
Forand (1994) and Henyey-Greenstein (1941)) phase functions with backscattering
ratios identical to the ‘classical’ average Petzold function. We show that the
additional variability of the resulting water leaving radiance is about 7% (4%
between the Fournier-Forand functions themselves) for most scenarios. We also
show a previously unknown maximum of the discrepancy (up to 10%) for highly
scattering waters. We discuss the importance of relative differences in phase
function for different angular ranges to this maximum and to the behaviour of
the discrepancy as a function of solar zenith angle.

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/
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1. Introducton

Remote sensing reflectance (RSR) is the ratio of upwelling vertical
radiance Lu to downwelling irradiance Ed , both observed above the sea
surface. It is usually approximated as

RSR = k
bb

a
, (1)

where bb is backscattering, a is absorption and k is a proportionality
factor (for historical reasons, often presented as the ratio of two coefficients
k ≡ f/Q; the approximation was originally proposed by Morel & Prieur
(1977) for diffuse reflectance with a proportional coefficient f, which required
an additional coefficient Q when the formula was adapted for RSR). Most
remote sensing students using the formula are probably aware that the value
of the coefficients f and Q, and hence k, depend on the angular distribution
of the downwelling radiation (Morel & Gentili 1993; for a recent review of
solar radiation, see Dera & Woźniak 2010), especially the solar zenith angle
(Gordon 1989), and on sea surface roughness (Gordon 2005; for a recent
review of surface roughness, see Massel 2010). However, many would be
surprised that the coefficients also depend on the shape of the in-water
scattering phase functions.

Volume scattering functions (VSFs) describe the angular variation of
scattered light intensities. Normalizing the VSF to the scattering coefficient
gives the scattering phase function. Knowledge of the phase function and
other inherent optical properties (IOPs) enables the radiance transfer to
be calculated for a beam of light. Seawater phase functions are strongly
asymmetrical. According to the measurements of Petzold (1972), whose
phase functions are still widely used in radiative transfer modelling, between
46% and 64% of light is scattered into angles smaller than 5◦. More than
96% of light is scattered into the forward hemisphere. The backscattering
ratio is defined as the integral of volume scattering function (VSF) over the
backward hemisphere bb divided by the total scattering coefficient b (VSF
integrated over the total sphere). This bb/b value describes the probability
of scattering into the backward direction during a single scattering process.

It would seem that, because the backscattering coefficient is used
explicitly in the RSR approximation (1), the angular shape of the phase
function is already accounted for. However, there are an infinite number of
possible phase function shapes that correspond to the same backscattering
ratio. Of course, only a limited subset of them are actually relevant to
oceanic radiative transfer calculations, but it is important to check how
much variability in the calculated RSR value may result from the choice
of a phase function even with a fixed bb/b value. This possible source of
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the radiative transfer calculation error of RSR was studied by Chami et al.
(2006) (this study is henceforth referred to as CMLK06), who compared the
water leaving radiance for experimentally derived and Fournier-Forand (FF)
parameterized phase functions with identical backscattering ratios using the
Mobley et al. (2002) parameterization (and building on the results of that
paper, which also discussed the effect of phase function shape on computed
light-field quantities). However, because there is more than one way to
parameterize FF phase functions for identical scattering and absorption
coefficients (including the backscattering ratio) (Freda & Piskozub 2007),
we decided to compare the effect of choosing a different FF function for
a given bb/b value on calculated remote sensing reflectance. In addition to
that, we also included the average Petzold function and Henyey-Greenstein
functions, as they are often used in radiative transfer modelling. This
approach means that any discrepancies in calculated RSR values found in
our study are independent of the ones previously reported by Chami et al.
(2006), broadening the range of potential scattering phase functions for
a given bb/b.

2. Method

The RSR was calculated with a 3D Monte Carlo radiative transfer
algorithm, originally created to study self-shading instrumentation mea-
surement artifacts (Piskozub 1994, Piskozub et al. 2000) but subsequently
used in ocean radiative transfer studies (Flatau et al. 1999, Piskozub et al.
2008). The algorithm makes it possible to calculate the RSR separately
for photons leaving the marine environment and for photons, which as
a result of reflection from a roughened sea surface, increase the value of
the reflectance. These two parts of the RSR will be called the water
leaving radiance reflectance and the reflective part of the RSR. The former
depends on both the optical properties of seawater (like the VSF and the
absorption coefficient) and the illumination conditions above the sea (like
the Sun’s position, the amount of light coming from a diffusive sky and sea
surface roughness); the latter (the reflective part of RSR) depends on the
illumination conditions above the sea surface only.

The input data of the algorithm include the number and depths of
layers, the IOPs of each layer, the absorption coefficient of the bottom,
light conditions (zenith and azimuth solar angles, ratio of light coming
from a diffuse sky) as well as the wind conditions (speed and direction)
to calculate wave roughness (see Cox & Munk 1954). For each calculation
a diffuse light ratio of 0.3 was used, and the atmospheric phase function
was approximated by Rayleigh theory. The depth of 2000 m was chosen as
being large enough to avoid any bottom-related effects; the wind speed was
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set at 5 m s−1. The phase functions used as input data for our modelling
where chosen to fit the same value of the backscattering ratio. They are the
average Petzold phase function (Mobley 1994), the Henyey-Greenstein phase
function with average cosine g = 0.9185, and four Fournier-Forand phase
functions. All have the same value of the backscattering ratio bb/b = 0.0183.
Freda & Piskozub (2007) showed that the refractive index parameter n of
Fournier-Forand phase functions, best fitted to measurements, can vary from
less than 1.01 to about 1.25. Consequently, values of n equal to 1.01, 1.05,
1.1 and 1.2 were chosen to obtain various shapes of FF phase functions,
calculated using (Forand & Fournier 1999):

β̃cum =
1

(1 − δ)δv

[
1 − δv+1

−

1

2
sin(θ/2)(1 − δv+1)

]
+

+
1 − δv

180

16π(δ180 − 1)δv
180

[
cos(θ) − cos3(θ)

]
, (2)

where v =
3 − µ

2 , u = 2sin
(

θ
2

)
, δ = u2

3(n − 1)2
, and δ180 is δ determined for

a scattering angle θ = 180 deg.
Values of the second FF parameters µ, for given bb/b, were obtained

from

µ = 2
log(2bb/b(δ90 − 1) + 1)

log δ90

, (3)

where δ90 is δ determined for a scattering angle θ = 90 deg.
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Figure 1. Phase functions used for Monte Carlo modelling. All have the same
value of bb (= 0.0183)
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The input phase functions were prepared in cumulative form. But they
are shown (see Figure 1) as phase functions (non-cumulative) so as to depict
more details for backward angles (90–180 degrees).

3. Results and discussion

Because for an infinitely deep ocean, the IOP parameter controlling
the light field as a function of optical depth is the single scattering
albedo ω0 = b/c, we present our results as its function (unlike Figures 6
and 7 of CMLK06, which used bb/a). This choice of presentation was
arbitrary because we limited ourselves to one backscattering ratio (one of
the average Petzold functions) and therefore the only free parameter we
had was the absorption coefficient a. We simply decided that b/c was
a more ‘natural’ way of showing this variability than bb/a. The results
are presented in Figure 2 as the ratio of the Monte Carlo calculated RSR
for a given phase function to the value calculated for the average Petzold
phase function.
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Figure 2. Ratio of RSR for each phase function to RSR for the average Petzold
phase function for attenuation coefficient c = 0.3 m−1 and solar zenith angle 30◦

as a function of the single scattering albedo

The results show that in most of the single scattering albedo domain the
choice of FF functions of identical bb/b may result in a difference of up to 5%
in calculated RSR values. This variability is independent of the variability
between FF-modelled and measured phase functions observed in CMLK06.
As in CMLK06, our results show convergence of RSR with decreasing single
scattering albedo. This is easy to explain because when the particle single
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scattering albedo drops to zero, the particle scattering coefficient vanishes,

and the choice of phase functions cannot therefore affect the value of RSR.

A more interesting result is the divergence of RSR for a high single

scattering albedo. The presence of this effect means that one should expect

especially large divergences between water leaving radiance levels when

modelling highly scattering waters (for example, bubble clouds). The results

presented in CMLK06 do not show this effect, which is surprising because

the highest ω0 value of the rightmost points in CMLK06 Figures 6a and

7a are about 0.98, whereas the effect we observe starts around ω0 = 0.8.

The only explanation we have of why Chami et al. (2006) did not see

this effect is that the measured and FF-modelled phase functions they

compared have similar shapes in the relevant forward scattering region (see

next paragraph), unlike some of the different analytical functions that we

have been studying.

It is important to notice that the two outliers in this highly scattering

regime (the HG function and FF for n = 1.01) are also outliers in the phase

function (Figure 1) for a wide scattering region (about 4 to 120 degrees

– forward scattering is not shown in the figure). For a single scattering

albedo lower than 0.9, the two functions are also outliers but with inverted

signs. This suggests that for single scattering albedo values smaller than 0.9

the major part of the water leaving reflectance comes from backscattering,

while for a highly scattering regime the dominant angular region is forward

scattering (but not into small angles). This result (the dominance of 4 to 120

degree scattering angles) seems to be a slight modification of the conclusion

of CMLK06 (see Figure 10 in that publication) that for highly scattering

waters, the dominant scattering regime in the history of photons leaving the

water is forward scattering.

Chami et al. (2006) assumed, after performing a number of simulations,

the ‘angular reciprocity of the sensor viewing angle relative to the solar

zenith angle’ and therefore tested the effect of different sensor viewing angles

for a fixed solar zenith angle. Because changing the solar zenith angle

and calculating RSR for each of them seems more natural (one that does

not add any additional systematic error) and because the form of graphic

presentation chosen in Figures 6 and 7 of CMLK06 makes it very difficult

to determine the functional relationship of RSR vs. the solar zenith angle,

we decided to study this effect with a series of different solar zenith angles.

The water leaving radiance reflectances (which are parts of RSR) are shown

in Figure 3. The results show that the phase functions used in the study

may lead to an up to 7% variation in calculated water leaving reflectance

values (4% between the FF functions only). The discrepancies are largest
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Figure 3. Water leaving radiance reflectance as a function of solar zenith angle
modelled for light coming from both point sources (70%) and sky light (30%)

for a zenith solar angle of 0◦, suggesting that backscattering angles close
to 180◦ of different phase functions with the same bb/b ratio control the
discrepancy, at least for the ω0 = 0.8 value used.

The importance of backscattering angles close to 180◦ for water leaving
radiance with a fixed backscattering ratio stems from the fact that in the
first order of scattering, not all backscattered photons are able to leave the
water, with the Fresnel reflection coefficient increasing as the backscattering
direction recedes from the zenith until at 48.6◦ (for flat sea surface), total
internal scattering makes it impossible for the photons to leave the water.
This means that for a light source at the zenith, the first order of scattering
photons may leave the water only if scattered between 131.4◦ and 180◦.
This is why this scattering region (see also Sullivan & Twardowski 2009), as
opposed to total backscattering, is so important for reflectance, especially in
the small single scattering albedo regime (where a single order of scattering
is dominant). For RSR which takes into account only vertical water leaving
radiance, the first order of scattering influences RSR only through a single
backscattering angle 180◦−ϕ, where ϕ is the (in-water) source zenith angle.
Therefore, the existence of a scattering peak at 180◦ translates directly
into a RSR peak for ω = 0◦ (the solar zenith angle in Figure 3 is defined
above the water, but obviously the zenith angle of 0◦ is identical in and
above the water). Therefore, the different values of the 180◦ scattering
peak for different phase functions (with Henyey-Greenstein having no peak
and Petzold having the largest one) seem to be the source of RSR variability
close to a solar zenith angle of 0◦.
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Zaneveld (1995), who analytically considered the variability of the
remote sensing reflectance, showed that the approximation of RSR is
proportional to the value of the phase function for an angle π − Ψ (where
Ψ is the zenith angle of maximum of radiance).
Apart from Petzold’s functions, the values of the water leaving radiance

for various phase functions (Figure 3) are arranged in the same way as
the scattering angles for values less than 180◦. The highest water leaving
radiance for the zenith Sun’s position (angular distance from the zenith)
from 0 to about 60◦ is observed for the function FF with n = 1.01, and
the lowest value in that range of angles has the function of HG. For larger
zenith angles the situation is reversed: phase functions are arranged in the
same way for angles 180 − Ψ. For Ψ from 0 to about 60, the highest phase
function values are those for FF with n = 1.01, while the lowest ones are
the values of HG.

4. Conclusions

We show that the difference in angular shape between measured and
analytical (Fournier-Forand) functions of the same backscattering ratio is
not the only source of discrepancy in calculated remote sensing reflectances.
The choice of analytical function may cause about 5% of additional
variability in most of the single scattering variability range. This is
important in closure studies using radiative transfer to solve algorithms
for relating IOPs to reflectance, especially when using the same FF family
of functions, which may cause about 4% RSR variability depending on the
parameterization used (at present there is more than one available, namely
Mobley et al. (2002) and Freda & Piskozub (2007), and none of them
seem to be the last word in this field). However, the same variability is
important more generally in radiative transfer calculations that still use
several different families of analytical function as well as the ‘classical’
Petzold functions.
We also show a previously unknown effect of high (up to 10%)

discrepancy in RSR values calculated using the same functions in the high
ω0 value range (highly scattering waters). This may impact on radiative
transfer calculations of waters with bubble clouds.

Finally, we discuss the reasons for the peak in the studied discrepancy
for solar zenith angles close to 0◦. We argue that this peak is caused
by differences in the backscattering peak between the phase functions of
identical bb/b as a direct result of the effect of solar zenith angles and
backscattering angles on vertical water-leaving radiance values.
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