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Abstract

Hydrographic data from the North Aegean Sea were used to examine the summer
variability of surface water masses during the period 1998–2001. Attention was
placed on the surface hydrographic features of the area, such as the Black Sea
Water (BSW) plume expansion, the frontal characteristics of the BSW with
the Levantine Intermediate Water (LIW) and the variability of submesoscale
hydrographic features (such as the Samothraki Anticyclone). Strong southerly
wind stresses were found responsible for relaxing the horizontal density gradients
across the BSW-LIW frontal zone and displacing this front to the north of Lemnos
Island, thus suppressing the Samothraki Anticyclone towards the Thracian Sea
continental shelf. Under northerly winds, the BSW-LIW front returns to its regular
position (south of Lemnos Island), thus allowing the horizontal expansion of the
Samothraki gyre up to the Athos Peninsula. Present results indicate the importance
of medium-term wind stress effects on the generation of Samothraki Anticyclone
suppression/expansion events.

* The data analysed in this study were collected during the MEDITS project, supported
and funded under different contracts in the period 1998–2001 by EU DG Fisheries.

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/



58 G. Sylaios

1. Introduction

The North Aegean Sea is a part of the Aegean Sea (Figure 1)

experiencing complex bathymetric and hydrographic conditions (Lykousis

et al. 2002). The bottom topography is characterized by a NE-SW

oriented deep trough, separated by shallow sills and shelves, constituting the

‘North Aegean Trough’ (Poulos et al. 1997). Within this trough, three main

depressions exist: the Lemnos Basin to the north-east (maximum depth

1470 m), the Athos Basin at the centre (maximum depth 1150 m) and the

North Sporades Basin to the south-west (maximum depth 1500 m). A series

of shallow sills separate these basins from the Skyros Basin to the south

(maximum depth 1077 m), and from the Chios Basin to the west and south

of Chios Island, with a maximum depth of 1200 m (Velaoras & Laskaratos

2005). The coastal morphology consists of a series of semi-enclosed gulfs,

such as Alexandroupolis, Kavala and Strymonikos Gulfs to the north,

Thermaikos Gulf to the north-west and North Evoikos Gulf to the west,

where buoyancy inputs are supplied by moderate to high discharge rivers

(i.e. the Rivers Evros, Nestos and Strymon along the northern coastline,

and the Axios, Loudias, Aliakmon and Pinios in Thermaikos Gulf).

The most characteristic hydrographic feature of the area is the intrusion

of low salinity (29–34), nutrient-rich Black Sea Water (BSW), which

occupies the surface layer of the water column (20–40 m) and follows the
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Figure 1. The North Aegean Sea and its main physiographic features
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periphery of the cyclonic gyre (Ovchinnikov 1966), with deflecting branches

over the Samothraki and Thermaikos Plateaus (Ünlüata et al. 1990, Latif
et al. 1991). The North Aegean Sea appears to be mostly influenced

by BSW during spring and summer (April to July), when the mean

monthly outflow through the Dardanelles Straits reaches 15 000 m3 s−1,
corresponding to the increased river runoff and precipitation over the Black

Sea (Oguz & Sur 1989, Yüce 1995). The prevailing wind circulation controls

the flow path of the BSW plume in the North Aegean Sea (Vlasenko et al.
1996). In the summer, after passing the Dardanelles, the main branch of

the BSW flows south-westwards, under the influence of the annual northerly

Etesian winds, with its core water appearing south of Lemnos Island (Poulos
et al. 1997). In this region, a well-defined frontal zone is formed as a result

of the interaction of the low salinity BSW and the more saline (38.5–
39.0) Levantine Intermediate Water (LIW) originating from the Cretan Sea

(Ivanov et al. 1989, Zodiatis et al. 1996). Moreover, a significant portion

flows to the north of Lemnos Island (Theocharis & Georgopoulos 1993,
Vlasenko et al. 1996, Zervakis & Georgopoulos 2002). In the winter, the

BSW flows westwards, mostly along the northern coast of Lemnos, where

it bifurcates primarily to the north-west and occasionally to the south-
west, under the influence of north-easterly (bora-type) gales. This results

in the accumulation of cold brackish water over the north-eastern part of

the continental shelf, whereas warm and saline LIW appears in the south-
eastern part (off Lesvos Island) (Zervakis & Georgopoulos 2002).

The vertical structure of the water column in the North Aegean Sea

consists mainly of three layers: the low-salinity layer, with increased BSW
presence at the surface; the warm and highly saline LIW, at depths from

50 to 400 m; and the very dense North Aegean Deep Water (NADW) at

the bottom of each sub-basin (Lykousis et al. 2002). The BSW thickness
depends on freshwater discharged through the Dardanelles and on wind

shear, inducing vertical mixing with the underlying LIW layer (Zervakis

et al. 2000). Through its course in the North Aegean Sea, BSW undergoes
modification of its characteristics, gradually reaching a salinity of 38.0 in

the region of the Sporades Islands (central and western Aegean Sea). Yüce

(1995) considered the 38.7 isohaline as the lower limit of the BSW, resulting
in the penetration of deeper BSW down to almost 100 m depth in the

western part of the Aegean Sea.

Air-sea interactions and heat fluxes largely determine the convective

movement of water masses in the area. The strong, cold and dry northerly

winds, blowing over the Aegean Sea in summer (Lascaratos 1992), produce
upwelling episodes of the Levantine-origin nutrient-depleted intermediate

water along the western coasts of Lesvos and Lemnos Islands and along
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the Turkish coast. These events may produce a colder surface zone, with

temperatures 2–3◦C lower than in the northern and western parts of the

Aegean Sea (Poulos et al. 1997). In the winter, heat losses induced by

outbreaks of continental polar or arctic air masses, as well as evaporation,

support the sinking of surface water across the shelf down to continental

slope levels, where equilibrium may be reached. Such dense water formation

processes have been reported to occur over the Samothraki and Lemnos

plateaus by Gertman et al. (1990) and Theocharis & Georgopoulos (1993),

enhanced by the presence of cyclonic eddies intruding and/or upwelling high

salinity water in the area south of Thassos Island. Under these conditions,

BSW may act as an insulator at the vicinity of its outflow to the North

Aegean Sea, thus hindering dense water formation near the Lemnos Plateau

(Zervakis et al. 2000). Therefore, the interannual variability in BSW

thickness directly influences dense water formation along the Thracian Sea

continental shelf (Zervakis et al. 2003).

Since the spreading of BSW is considered the most prominent feature

of the upper North Aegean Sea, its dynamics and frontal characteristics,

together with the meso- and small-scale cyclonic and anti-cyclonic patterns

formed along its track, require special attention. These features show an

important temporal variability as a result of the variable BSW outflows

and changes in BSW characteristics, combined with the dynamic wind

field prevailing in the area (Zodiatis 1994). Zervakis & Georgopoulos

(2002) reported significant changes in the position of the BSW-LIW frontal

zone on a seasonal basis. In terms of the eddy field, a permanent

anticyclone of variable strength and dimensions has been revealed in the

Thracian Sea, around Samothraki and possibly Imvros Islands (Theocharis

& Georgopoulos 1993, Cordero 1999, Zervakis & Georgopoulos 2002). The

gyre recirculates the BSW up to the Thracian Sea shelf, in the vicinity of

the Evros river plume, inducing strong frontal conditions with the general

cyclonic circulation, and aggregating and retaining the organic nitrogen and

carbon-rich surface water (Zervakis & Georgopoulos 2002, Siokou-Frangou

et al. 2002), thus favouring phytoplankton growth (Sempéré et al. 2002).

Another cyclone of a semi-permanent nature covering the upper 200 m was

observed in the Sporades Basin (Kontoyiannis et al. 2003) – it is supplied

with higher salinity waters from the southern Aegean Sea. This feature co-

exists with anticyclones of variable strength and size, dependent on the BSW

inflow and Thermaikos Gulf freshwater outflows. Similarly, a cyclonic gyre

exists at the entrance of the Thermaikos Gulf, transporting water inwards

along the eastern coastline and outwards along the western coast of this gulf

(Zervakis et al. 2005, Olson et al. 2007).
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The current work presents collected hydrographic data and examines
the surface distribution of water parameters (temperature, salinity, density
and geopotential anomaly) during the summer periods of 1998–2001 with
the aim of studying meteorological influences on the surface water patterns
of the North Aegean Sea. In this work, special emphasis was placed on
the BSW plume expansion, the BSW-LIW frontal characteristics and the
variability of permanent and transient sub-basin gyre features.

2. Material and methods

The North Aegean Sea was visited during the summer periods in
1998–2001, on board the fishing trawler ‘Evagelistria’, for the conducting
of experimental fishery research within the framework of the MEDITS
(Mediterranean International Trawling Survey) programme. The area
covered represents the whole North Aegean Sea and the northern part of the
Central Aegean Sea, between 38–41◦N and 22.5–26.3◦E. Table 1 presents the
starting and ending dates of each MEDITS summer cruise, together with the
number of stations sampled per year. Standard hydrographic measurements
were undertaken using a Seabird Electronics SBE 19 plus CTD. Sensor
accuracy was 0.01◦C for temperature and 0.01 mS cm−1 for conductivity.
A total of 360 CTD casts were obtained during summers 1998–2001. The
1998 and 1999 cruises commenced from the Thracian Sea coastline (northern
Aegean Sea border), followed a meridian transect through Lemnos, Lesvos
and Chios Islands, and then moved north-westwards to the Sporades Islands,
where the cruise ended. The 2000 and 2001 cruises followed a similar track,
but extended to the northern Evoikos, Thermaikos and Strymonikos Gulfs
(Figure 2). The 2000 and 2001 castings were limited to the first 200 m
of the water column depth, to monitor surface dynamics and associate the
collected data with the distribution of the ichthyofauna, which was sampled
concurrently using a bongo net (0–50 m depth). The 1999 survey profiles
were limited to 50 m depth.

Table 1. Summary characteristics of 1998–2001 MEDITS cruises

Year Starting date Ending date Sampling stations

1998 17.06.1998 20.07.1998 106
1999 18.06.1999 26.07.1999 45
2000 21.06.2000 28.07.2000 106
2001 01.06.2001 13.07.2001 103

The raw data were filtered and processed according to the SBE
software manual to derive water temperature and salinity as a 1-dbar
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Figure 2. Sampling stations in the summer periods of 1998 (a), 1999 (b), 2000
(c), and 2001 (d)

bin average, together with potential temperature and density (σt-values).

Standard routines (SeaMat library, available at http://woodshole.er.usgs.

gov) were used to produce geopotential anomaly values (dynamic height

in m multiplied by the acceleration due to gravity, expressed in J kg−1

or m2 s−2) at 5 dbars relative to 40 (∆Φ5/40) and 100 dbars (∆Φ5/100).

Based on these values, geostrophic velocity vectors were then produced.

Although a deeper reference level may be desirable (e.g. 200 dbars),

previous studies have demonstrated the utility of the 40 and 100 m

reference levels for capturing the effect of the BSW buoyancy input (Zervakis

& Georgopoulos 2002). Processed data were imported to the ODV database

(Ocean Data View, Schlitzer 2005) for further manipulation and export

to relevant databases (e.g., WOCE, WOD, etc.). Horizontal maps of

selected variables were produced using DIVA gridding software (Data

Interpolating Variational Analysis), an algorithm that considers coastlines

and bathymetry features for domain subdivision and performs better in the

case of sparse and heterogeneous data coverage (signal-to-noise ratio= 40;

quality limit= 1.5; excluding outliers). Meridional sections were produced

for each parameter using VG gridding, utilizing data from the original
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sampling stations and not reconstructing them from the 3-D parameter

field.

Meteorological data (air temperature, atmospheric pressure, wind speed

and direction) for the period commencing fifteen days prior to the cruise
start until the end of each annual cruise, were obtained from all the

main airports of the broader North Aegean Sea area (Thessaloniki, Kavala,

Alexandroupolis, Chios I., Lemnos I., Skyros I. and Istanbul). These data
were combined with the surface wind vectors obtained from the NOAA

3-D atmospheric model, based on systematic satellite observations over the
North Aegean Sea (http://www.arl.noaa.gov/ready/amet.html). Figure 3

presents a synoptic view of the surface wind vectors prevailing over the
North Aegean Sea during each cruise period. The significant impact of the

Etesians (north to north-easterly winds) during the 1998 to 2000 cruises
is shown. Strong south to south-westerly winds, changing rapidly to

northerlies, dominate during the 2001 sampling period.
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sampling periods of summer 1998 (a), 1999 (b), 2000 (c), and 2001 (d)
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3. Results

3.1. The 1998 cruise

The sea surface temperature displays a zonal distribution, with lower
values (20–21◦C) in the Thracian Sea and higher ones (23.2◦C) in the
Chios Basin (Figure 4a). This distinct north-to-south gradient is disrupted
by the presence of cooler water (19–20◦C) in the area south of Lemnos
Island, corresponding to the BSW core. Relatively colder water occupies
the surface layer along the eastern coastline of the North and Central
Aegean Sea, with values 22–23◦C near Lesvos and Chios Islands, compared
to the warmer water (24.5◦C) near the Sporades Islands. A similar zonal
pattern is also exhibited by the surface salinity, with minimum values in an
extended area south of Lemnos Island (28.7–29.3), occupied by the BSW.
From this minimum, the surface salinity showed gradually increasing values
of 33.0–34.5 towards the Thracian Sea and to the south-west towards the
Sporades Basin (33.8–36.3) (Figure 4b). The very distinctive frontal zone
separating the BSW and the LIW appears to be located in the vicinity of
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Figure 4. Horizontal distribution of water temperature (a), salinity (b), density
σt (c) and geopotential anomaly (∆Φ0/40 m) (d) at the surface of the North Aegean
Sea in summer 1998
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Agios Efstratios Island. However, the ‘closed-bull-eye’ pattern in this area
is mostly the result of the sparse and heterogeneous data coverage in this
area, representing the exit of the BSW from the Dardanelles, rather than
an existing hydrographic feature. The eastern coastline of the Aegean Sea
is covered by water of Levantine origin, with typical high salinity values of
38.1 to 38.9. Figure 4c displays the horizontal σt-distribution, presenting
patterns similar to those of salinity. The BSW is characterized by low
density values (19.8–21.5); the Thracian Sea and the Sporades complex
are almost homogeneous with moderate density levels of 23.8 to 24.2,
while the Chios Basin shows elevated values (25.6–26.9). The horizontal
geopotential anomaly distribution of ∆Φ5/40 revealed the occurrence of the
BSW-LIW frontal area, together with an anticyclonic gyre, moderate in
strength (∆Φ5/40 = 0.90 m2 s−2) and magnitude (40 km diameter), located
to the north-west of Lemnos Island towards the Athos Peninsula (Figure 4d).

Figure 5 presents the temperature and salinity distribution along the
meridian transect at 25◦E to reveal differences in the water column structure
along the North and Central Aegean Sea. Thermal and saline stratification
prevail in the first 100 m of the Thracian Sea. The well-established
thermocline occurring at 25 m depth in the Thracian Sea (15–16◦C) sinks
rapidly to 50 m depth near the Lemnos Plateau, diffusing gradually in
the Skyros Basin, and further south in the Chios Basin, where almost
homogeneous conditions (14–15◦C) dominate between 50 and 200 m depth.
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Moreover, a cold water mass (T = 13–14◦C) moving southwards from the
Thracian Sea shelf (40–70 m depth), intruding the Lemnos Plateau water
column at 100 m depth (Figure 5a), is the winter-originated BSW, which
is trapped below the warmer summer BSW (Zervakis & Georgopoulos
2002). In the summer, the vertical expansion of the BSW gradually reaches
40 m depth at the Thracian Sea continental shelf, having isohalines sloping
downwards at 1:2500 m or 0.01◦. Well-mixed conditions prevail in the Skyros
and Chios Basins covered with the highly saline LIW (Figure 5b).

3.2. The 1999 cruise

The BSW core (T = 22–23◦C; S = 32–33; σt = 21.2–21.8) is detected
along the southern coastline of Lemnos Island, with the BSW-LIW frontal
zone located near Agios Efstratios Island. However, it is evident that
the BSW-signal in the North Aegean is weaker compared to 1998, but
with significant superficial expansion, especially towards the Thracian Sea
and the western end of Lesvos Island. Thermal distribution shows the
occurrence of cooler water (22–23◦C) in the central and southern zones
of the Chios and Skyros Basins and Lemnos Plateau, in contrast to the
warmer Thracian Sea (23–24◦C) (Figure 6a). Such a distribution relaxes
the north-to-south temperature gradient, but induces a stronger east-to-
west horizontal variability, due to the presence of warmer water (25–26◦C)
at the western end of Lesvos Island and in the Sporades complex, separated
by cooler water in between (23◦C). Surface salinity in the Thracian Sea and
Lemnos Plateau is almost homogeneous, ranging between 31.3 and 33.2,
exhibiting an abrupt change to 37.0 at the surface of the Skyros Basin, and
further south-west towards the Sporades Islands (Figure 6b). The meridian
surface density gradient, produced by a ∆σt difference of 5.6, dominates the
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Meteorological influences on the surface hydrographic patterns . . . 67

1999 distribution, with the evident entrapment of denser (σt = 25.6), highly
saline (S = 37.3–37.5) surface water in the Sporades Basin.

3.3. The 2000 cruise

Strong thermal gradients in an east-to-west direction are displayed
during this cruise, as a result of coastal upwelling under the influence
of strong Etesian winds. Colder water (19.5–20.3◦C) is observed in the
Skyros Basin and the coastlines of Lesvos and Chios Islands (Figure 7a).
In contrast, the water along the continental shelf of north-western Greece
appears significantly warmer (24.2–25.7◦C), especially in the Sporades and
Athos Basins. The Thracian Sea and Lemnos Plateau exhibit almost
uniform sea surface temperature (22.3–23.7◦C) and salinity (34.1–34.8). The
BSW-LIW convergence zone induces strong salinity gradients in the vicinity
of Agios Efstratios Island (Figure 7b). The BSW core (T = 22.5◦C; S = 31.7;
σt = 21.5) is detected to the west of Lemnos Island. The northward branch of
the BSW plume, consisting of gradually mixed water, appears defined by the
34-isohaline crossing Thassos Island. The south-western branch propagates
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Figure 7. Horizontal distribution of water temperature (a), salinity (b), density
σt (c) and geopotential anomaly (∆Φ0/40 m) (d) at the surface of the North Aegean
Sea in summer 2000
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in rapidly mixed surface patches, reaching the Sporades Basin with salinities
between 33.0 and 36.5. Increased surface salinity values are recorded in the
Thermaikos Gulf (36.6–37.2), due to the limited influence of river-induced
inputs (Figure 7b). The highly saline LIW covers uniformly the surface
water in the Chios Basin (S = 38.4–38.8), with σt-values of 25.5 to 27.5
(Figure 7c). The ∆Φ5/40 distribution illustrates the presence of relatively
lighter water (∆Φ5/40 = 0.90–0.95 m2 s−2) covering the Lemnos Plateau and
the Thracian Sea, with the core of the BSW plume located at the south-
west end of Samothraki Island, thus determining the anticyclonic baroclinic
circulation of the surface layer (Figure 7d). Across the frontal zone, the
geopotential anomaly ∆Φ5/40 rapidly reduces to near zero values, while
intermediate values (0.40–0.70 m2 s−2) are obtained in the mixing zones of
the Sporades and Athos Basins.

A strongly stratified water column, induced by BSW expansion over
the Thracian Sea, is shown in the meridian transect at 25◦E (Figure 8).
Temperature and salinity isolines depict a downward slope from the Lemnos
Plateau towards the Thracian Sea continental shelf (1:3100 m or 0.02◦),
where the BSW achieves its maximum thickness, turning upwards nearer the
coast, thus producing a prominent anticyclonic movement near Samothraki
Island. Cold water at 13–14◦C occupies the deeper parts of the coastal water
columns, moving deeper (between 100 and 150 m) across the Thracian Sea
shelf, towards the North Aegean Trough and Lemnos Plateau.
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Figure 8. Distribution of water temperature (a) and salinity (b) along the 25◦E
meridian transect in summer 2000
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3.4. The 2001 cruise

The results from this cruise reveal significant changes in the distribution

of North Aegean Sea water masses, especially in terms of BSW salinity,

as compared to those observed during the 1998–2000 summer periods.

Strong surface temperature gradients prevail in the east-west direction, with

relatively cooler water of 19.20–21.20◦C around Lemnos and Lesvos Islands,

and warmer conditions of 25.00–26.70◦C along the north-western coastline

(the Halkidiki Peninsula and Strymonikos Gulf). Such a temperature

distribution induces the presence of a north-to-south oriented thermal

frontal zone, crossing the Athos Basin and relaxing over the Sporades and

Chios Basins (Figure 9a). An increased BSW salinity (34.0–34.7) is recorded

during this cruise over the Thracian Sea and partly over the Lemnos Plateau

(Figure 9b). A limited BSW core (S = 31.15, in the first 2 m depth) is

detected along the southern coastline of Lemnos Island, while the LIW

convergence zone appears displaced (following a sigmoidal track) to the

north-west of Lemnos. LIW (T = 21.5–22.1◦C; S = 38.2–38.8; σt = 26.2–
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27.4) propagates northwards as far as 39.5◦N, while the less saline BSW

covers the whole Thracian Sea and expands westwards into Strymonikos

Gulf. In Thermaikos Gulf, freshwater plumes (T = 23.8–24.3◦C; S = 15–30)

are developed moving southwards along the mainland coast, but this water

seems insufficient to reach the Sporades Basin surface layer, which appears

supplied by the rapidly mixed BSW (Figure 9c). The horizontal geopotential

anomaly (∆Φ5/40) gradient clearly displays a northward propagation in

the BSW-LIW convergence zone between Imvros and Thassos Islands,

the lighter BSW core at the north-west end of Samothraki Island (0.90–

1.02 m2 s−2), and the intermediate ∆Φ-values in Thermaikos Gulf (0.4–

0.6 m2 s−2) (Figure 9d). The 25◦E meridian transect illustrates the changes

in the water column dynamics (Figure 10). Thermal stratification in the

Thracian Sea appears weak (∆T = 4.2◦C), with the thermocline being

lowered between 25 and 40 m. The lighter BSW appears to be suppressed
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between the Thracian Sea coastline and the outer zone of the Samothraki
Plateau.

4. Discussion

4.1. Meteorological impact on SST and stratification

Water circulation, and water mass characteristics and distribution at
the surface layer of the North Aegean Sea depend strongly on the buoyancy
inflow of waters of Black Sea origin through the Dardanelles Straits, induc-
ing the development and evolution of a freshwater plume. Superimposed on
this regime lies the impact of air-sea heat exchanges along with the influence
of the prevailing wind shear stresses. As these factors exhibit significant
seasonal and interannual variability, corresponding changes are expected in
the surface circulation, in the strength and the position of eddies and frontal
zones, and in the water column dynamics of the North Aegean Sea (Zodiatis
et al. 1996, Poulos et al. 1997). Moreover, surface temperature and salinity
trends in the North Aegean Sea, attributed to variations in the heat, water
and salt budgets of the area, may cause changes in the intermediate and
deep water mass characteristics (Bethoux & Gentili 1999). Ginzburg et al.
(2004) associated the Black Sea interannual surface temperature variability
with ENSO events, showing the occurrence of a warmer summer during
1998 (associated with an ‘El Niño’ event during February 1997 to April
1998) and a warm winter and summer during 1999 (associated with a ‘La
Niña’ event between May 1998 and December 2000). Similar relations were
also reported by Kazmin et al. (2010), showing a gradual SST increase in
the Black Sea between 1994 to 1999, in connection with local and large-scale
atmospheric forcing, and a lagged North Aegean SST behaviour.

Indeed, the 1998–2001 North Aegean Sea surface data, averaged spatially
over the main physiographic units (Table 2), suggest the occurrence of
significantly warmer surface water masses over the Thracian Sea and Lemnos
Plateau during the summers of 1999 (24.07◦C and 22.66◦C, respectively) and
2000 (22.67◦C and 22.58◦C, respectively). Similar patterns were depicted
in the Sporades Basin, with warmer water observed during the summers of
1999 (24.48◦C) and 2000 (25.02◦C), probably attributed to the advection
of warmer BSW combined with local heat exchange and mixing processes.
In contrast, surface water variability in the LIW-dominated Chios Basin
showed a gradual temperature decrease, from 23.36◦C in 1998 to 21.52◦C
in 2001. Increased surface water temperature in the Thracian Sea, Lemnos
Plateau and Sporades Basin seems counterbalanced by relatively cooler sub-
surface water of 13.98◦C, 14.11◦C and 13.84◦C, respectively, during the
summer 2000 period.
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Table 2. Summary data for North Aegean Sea layers

Thracian Sea Limnos Plateau Chios Basin Sporades Basin

T [◦C] S σt T [◦C] S σt T [◦C] S σt T [◦C] S σt

1998
surface 20.45 34.00 23.89 21.95 31.57 21.63 23.36 38.35 26.38 24.32 36.01 24.32
mean 0–50 m 15.93 36.50 27.00 16.96 36.92 27.09 18.28 38.82 28.21 17.02 37.77 27.71
mean 50–200 m 14.04 38.63 29.41 14.22 38.85 29.55 15.05 39.03 29.51 13.94 38.63 29.45

1999
surface 24.07 32.38 21.65 22.66 33.17 22.65 22.83 39.00 27.03 24.48 36.79 24.86
mean 0–50 m 16.64 37.84 27.83 17.27 38.13 27.91 17.41 39.05 28.58 14.98 38.52 28.51
mean 50–200 m

2000
surface 22.67 34.10 23.36 22.58 32.94 22.50 21.30 38.62 27.18 25.02 35.57 23.77
mean 0–50 m 17.78 36.49 26.54 18.13 36.68 26.62 18.62 39.08 28.34 18.54 37.85 27.38
mean 50–200 m 13.98 38.83 29.52 14.11 38.85 29.51 15.53 39.16 29.41 13.84 38.74 29.48

2001
surface 20.54 34.78 24.45 20.33 36.33 25.70 21.52 38.44 26.98 22.34 36.94 25.61
mean 0–50 m 17.33 36.59 26.73 17.83 38.68 28.24 18.68 38.84 28.14 18.51 38.41 27.85
mean 50–200 m 14.53 38.80 29.43 15.53 39.04 29.37 15.50 39.01 29.37 15.10 38.91 29.35
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Furthermore, during these warmer winter and summer periods over the
broader Black Sea area, evaporation and subsequent precipitation rates
increase, and since the system functions under a positive water balance
(Özsoy & Ünlüata 1997), this may increase the BSW outflow through
the Dardanelles, stabilizing thermal and saline water column stratification
(Stanev & Peneva 2002). Present results indicate a strongly stratified water
column throughout the Thracian Sea (∆T0/50 m = 9.20◦C; ∆S0/50m = 6.8)
and the Lemnos Plateau (∆T0/50 m = 7.60◦C;∆S0/50m = 6.1) during summer
1999. The influence of southerly winds in summer 2001 promoted turbulent
mixing (∆S0/50m = 2.7), leading to the elevated surface salinity values
recorded in the Thracian Sea (34.78), Lemnos Basin (36.33) and Sporades
Basin (36.94), followed by a lowering of the halocline down to 70 m depth.
Wind mixing gradually shifts the bottom of the BSW layer to warmer and
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Figure 11. Temporal variability of water mass characteristics in the Thracian Sea
and Lemnos Plateau (a), Chios Basin (b), Sporades Basin (c) and Thermaikos Gulf
(d); (black squares: 1998; blue squares: 1999; red triangles: 2000; green circles:
2001)
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more saline conditions. This is shown in Figure 11a, which presents the T -S

diagram for the Thracian Sea and Lemnos Plateau. Point A (T = 13.14◦C,

S = 37.57, σt = 28.52) defines the bottom of BSW in summer 1999, point B

in summer 2000 (T = 13.31◦C, S = 38.35, σt = 29.16) and point C during

summer 2001 (T = 14.39◦C, S = 38.58, σt = 29.10). Similar effects of

turbulent mixing appear in the Sporades Basin (Figure 11c) and Thermaikos

Gulf (Figure 11d), while in the Chios Basin the thermohaline conditions

remain almost unchanged (Figure 11b).

The influence of turbulent mixing and horizontal LIW transport under

local southerly winds may only partially explain the increased salinity values

observed at the surface of the Thracian Sea and Lemnos Plateau in summer

2001. Another important mechanism appears to be the turbulent mixing

taking place along the so-called Turkish Straits (TS) conduit (consisting of

the Sea of Marmara, the Straits of Istanbul and the Dardanelles), thus

increasing the total salt content of BSW outflow in the North Aegean

Sea. Indeed, during the late May–early June 2001 period, strong south-

westerly gales prevailed along the TS, rapidly changing to vigorous north-

easterly Etesians. Under south-westerly winds, the denser North Aegean

Sea water increases its thickness along the Dardanelles, supporting vertical

mixing and promoting salt diffusion to the upper layer, thus returning salt

back to the Mediterranean (Yüce 1996, Özsoy & Ünlüata 1997, Stashchuk

& Hutter 2001). In contrast, north-easterly winds, dominant during the

1998, 1999 and 2000 summer sampling periods, cause southward surface

currents to increase and northward bottom currents to decrease (Yüce 1996).

Under these conditions, the thickness of Mediterranean water decreases and

vertical mixing is limited as a result.

4.2. Response of BSW-LIW front and Samothraki Anticyclone

to wind forcing

At the sub-basin scale field of gyres and flows, the BSW-LIW frontal

zone and the Samothraki Anticyclone appear as the most prominent surface

features of the North Aegean Sea. Horizontal density gradients across

the frontal interface appear stronger during the 1998 conditions (∆σt =

0.11 per km), reducing to 0.05 per km in 2001, due to horizontal and

vertical mixing induced by southerly winds. A significant cross-frontal

horizontal geopotential anomaly gradient (∆Φ5/40 = 0.012–0.018 m2 s−2 per

km) remains almost constant throughout the samplings. The Samothraki

Anticyclone appears as a permanent feature in the area, containing a low

density core (supplied by the less saline BSW) that produces both an

upward doming of the sea surface, detectable by satellite altimeters (Larnicol
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et al. 2002), and a strong clockwise geostrophic circulation (Theocharis
& Georgopoulos 1993). The horizontal distribution of the geopotential

anomaly (contour of ∆Φ0/40 > 0.8 m2 s−2) was used to identify the
anticyclone’s core water. It occurred that in summers 1998 and 2000,
under northerly winds, the anticyclone was located to the north-west of

Lemnos Island (Figure 4d) and to the south-west of Samothraki Island
(Figure 7d) respectively, while in summer 2001, under the influence of strong
south to south-westerly winds, it moved to the north-west of Samothraki

Island (Figure 9d). Figure 12 illustrates the eastward/westward baroclinic
transport in the 0/40 m layer along the 25◦E meridian. It turns out
that in summers 1998–2000, under the influence of northerly winds, the

Samothraki Anticyclone achieved almost symmetrical forms in terms of
eastward/westward surface layer transport. Moreover, westward baroclinic
transport induced by the BSW outflow was observed in deep water. In
summer 2001, as the Samothraki Anticyclone moves northwards, it seems

to collide on the Thracian Sea continental slope and then interact with
the westward spreading Evros river plume, thus reducing the anticyclone’s
eastward moving branch, while the westward transport appears intensified.

Shi & Nof (1993) showed that such collision ultimately leads to the eddy
splitting into two with opposing signs. Further south, it turns out that

Figure 12. Baroclinic transport in the surface 0/40 m layer (positive – eastward;
negative – westward) along the 25◦E meridian transect; (black squares: 1998; blue
squares: 1999; red triangles: 2000; green circles: 2001)
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the sharp increase in the salt content of the BSW layer in summer 2001
produced limited west-orientated baroclinic currents (Figure 12).

Considering these findings to be typical of the impact of the wind shear
stress on the behaviour of sub-basin scale patterns in the North Aegean Sea,
one may argue that strong southerly winds tend to displace the BSW-LIW
frontal zone to the north of Lemnos Island, thus suppressing the anticyclone
towards the Thracian Sea continental shelf. Under these conditions the
system reduces its radius and deepens, increasing its surface elevation at the
centre, leading to surface convergence and subsurface divergence associated
with the halocline lowering due to downwelling effects. On the other
hand, northerly winds tend to return the BSW-LIW front to its regular
position (south of Lemnos Island), allowing the horizontal expansion of
the Samothraki Anticyclone. Gyre horizontal expansion favours surface
slope reduction, leading to surface divergence and subsurface convergence,
thus allowing isopycnals to gradually rebound towards the surface, causing
upwelling. As low-density water in the upper part of the anticyclone moves
radially outwards, it is replaced by deeper water moving upwards from the
core of the eddy, which in turn is replaced by denser deep water moving
radially inwards from the eddy margins. This mechanism has been suggested
by several investigators (Pinot et al. 1995, Mackas et al. 2005).

Strong winds from alternate north-to-south directions, lasting for
a few days over the Aegean Sea, may cause such Samothraki Anticyclone
suppression/expansion events, resulting in significant vertical movements
within the system. These water movements could be responsible for
the occurrence of lenses with cooler and saline (upwelled) or fresher
and warmer (downwelled) water observed regularly in the water column
(between 10–30 m depth) over the Thracian Sea continental shelf (Zervakis
& Georgopoulos 2002). As the wind rapidly changes its orientation during
the winter (Poulos et al. 1997), this mechanism could also support the
occurrence of surface saline ‘tongues’, leading ultimately to deep water
formation events along the Thracian Sea continental shelf, as reported by
Theocharis & Georgopoulos (1993).

A quantitative estimation of vertical velocity could be obtained following
the quasi-geostrophic density equation procedure (Pinot et al. 1995):

∂ρ

∂t
+ ug

∂ρ

∂x
+ vg

∂ρ

∂y
+ w

∂ρ

∂z
= 0, (1)

which gives

w = wx + wy + wt = −αxug − αyvg + wt, (2)

where
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αx =
∂ρ/∂x

∂ρ/∂z
, αy =

∂ρ/∂y

∂ρ/∂z
, and wt = −

∂ρ/∂t

∂ρ/∂z
. (3)

Following the determination of eastward/westward baroclinic transport
in the 0/40 m layer along the 25◦E meridian transect, αy can be estimated
from the elevation of isopycnals of ∆z = 1 m over a distance of ∆y = 2500 m,
for 1998. Since wy/vg = αy = ∆z/∆y, by taking vg = 0.1 m s−1, one
obtains a vertical velocity wy = 4 × 10−5 m s−1. Similarly, for the 2001
distribution, with a limited geostrophic velocity vg = 0.05 m s−1 and an
isopycnal elevation of∆z = 17m over a distance of ∆y = 56000 m, a reduced
vertical velocity of wy = 1.5 × 10−5 m s−1 is induced.
Indeed, relative vertical velocity estimations using the above described

quasi-geostrophic density equation appear to be in accordance with chloro-
phyll a concentration time series, recorded using SeaWiFS over the Samoth-
raki and Lemnos Plateaus (Groom et al. 2006). The results show that the
Samothraki Anticyclone could sustain the presence of increased chloro-
phyll a concentrations (3–5 mg m−3) in summer 1998 and 1999, when
vertical velocity values were higher, as opposed to the lower chlorophyll a
concentrations (0.7–1.0 mg m−3) in summer 2001, under lower convective
movement conditions.

5. Conclusions

The variability of surface water masses in the North Aegean Sea was
studied utilizing a series of 360 CTD profiles obtained during the summers
of 1998–2001. The results depicted the temporal variability of the Black Sea
Water (BSW) plume expansion, changes in the characteristics of the BSW-
LIW frontal zone, and variations in the location and radius of sub-basin
scale hydrographic features (such as the Samothraki Anticyclone). The
occurrence of significantly warmer surface water masses over the Thracian
Sea and Lemnos Plateau in summer 1999 and 2000 suggested a dependence
of North Aegean Sea surface dynamics on Black Sea freshwater inputs and
global atmospheric forcing (as ENSO events). Furthermore, the results
demonstrated the presence of water of relatively higher salinity at the
surface of the Thracian Sea and Lemnos Plateau during the summer of
2001, attributed to strong turbulent wind mixing along the Turkish Straits
and the local meteorological influence over the North Aegean Sea. Under
the action of strong southerly winds, the horizontal density gradients across
the BSW-LIW frontal zone appear relaxed and are displaced to the north
of Lemnos Island, while under northerly wind stresses, the front returns to
its regular position (south of Lemnos Island).
Finally, the present work indicated the importance of transient winds on

the horizontal expansion/suppression events of the Samothraki Anticyclone,
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leading to significant convective movements within the system. Analysis
of geostrophic currents along the 25◦ meridian transect showed that the
horizontal baroclinic transport varied from 0.02 to 0.1 10−3 Sv, while
approximations of the quasi-geostrophic density equation produced vertical
convective movement estimates of 1.5–4 10−5 m s−1.
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