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Abstract

The pathways of energy supply for mixing the deep waters of the Baltic Sea is
largely unknown. In this paper, a parameterization of the internal wave drag
forces on barotropic motion is developed and implemented into a two-dimensional
shallow water model of the Baltic Sea. The model is validated against observed
sea levels. The dissipation of barotropic motion by internal wave drag that is
quantified from the model results show that breaking internal waves generated by
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wind forced barotropic motions can contribute significantly to diapycnal mixing in
the deep water of the Baltic Sea.

1. Introduction

The Baltic Sea is a huge fjord-like estuary with a strong permanent
haline stratification and long deep-water residence times (Stigebrandt 2001,
2003, Meier 2005). A substantial freshwater surplus in combination with
limited ocean exchange makes the Baltic permanently salt stratified. In
the main basin, the Baltic proper, the halocline is located at a depth of
approximately 60 m, and below 125–150 m the water is only exchanged
intermittently. A seasonal thermocline is formed at 15–20 m during summer
and also during winter if the temperature falls below that of maximum
density (see Figure 2, page 472).

A restricted water exchange with the North Sea in combination with
a large surface area efficiently filters external high frequency sea level
oscillations, and therefore the contribution of tides to sea level variability is
insignificant (Stigebrandt 1980a, Samuelsson & Stigebrandt 1996, Gustafs-
son & Andersson 2001). Thus, tides as a source of energy for diapycnal
mixing are excluded in the Baltic Sea. Nonetheless, estimates reveal that
the energy supplied to carry out the observed changes in stratification is of
the order of 2.1 mW m−2 (Liljebladh & Stigebrandt 2000), which is actually
of a similar order of magnitude to that recorded in smaller fjord basins on
the Norwegian coast, which are subject to strong tidal currents (Stigebrandt
& Aure 1989).

A number of processes can contribute to diapycnal mixing in the Baltic
Sea. Vertically propagating near-inertial waves driven by variability in
the wind field were thought to be of major importance until Liljebladh
& Stigebrandt (2000) managed to quantify their contribution to about
0.35 mW m−2. Observations of strong baroclinic eddies in the deep water
led to speculation that these might make a substantial contribution to
diapycnal mixing (cf. Meier et al. 2006, Stigebrandt et al. 2002 and the
references in these papers). This speculation was challenged by Svensson
(2005), who estimated from observations that mesoscale eddies do not
contribute significantly to diapycnal mixing. Double-diffusive mixing may
occur periodically when intrusions of warm, saline waters are interleaved
in the stratification (e.g. Kuzmina et al. 2005), but in general this should
not be a factor contributing to the overall mixing either, since the absolute
majority of deep water is quite strongly salt-stratified. Coastal dynamics
may enhance mixing due to up- and downwelling, which is exemplified in
Stigebrandt et al. (2002). Döös et al. (2004) estimated a dissipation rate
of 0.4–1.2 mW m−2 by turbulent bottom friction from simulations with
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a barotropic numerical model. A portion of these losses could possibly be
used for mixing. Axell (1998) estimated from observations of stratification
that the energy supply needed for mixing in the deeper deep waters (depth
> 150 m) was about 5 and 0.6 mW m−2 in the Landsort Deep and Eastern
Gotland Basin respectively. He found a strong seasonal cycle that largely
follows that of the wind. However, there are still gaps in our understanding
of how energy is transferred from the atmosphere to the turbulent mixing
in the deep water.

Although conversion of barotropic to baroclinic waves has been under
intense focus during the past decade, there are no conclusive ways of quan-
tifying the energy flux. That part of the problem involving the excitation of
internal waves over an idealized topography and given stratification is fairly
straightforward, but it becomes virtually impossible to solve for a realistic
topography and when processes like wave-wave interaction and non-linear
dissipation due to breaking waves are included. The importance of small-
scale processes is evident from studies of internal tides in fjord basins. For
example, Berntsen et al. (2008) demonstrated sub-grid scale closure and
resolution dependence in very high resolution (10–100 m) simulations of
internal tides with a non-hydrostatic model, and Johnsson et al. (2007)
showed experimentally that two very closely spaced sills (about 1 km or 1/7
of the internal Rossby radius) generated internal tides without interaction.
Thus, one has to resort to various extremely simplified parameterizations. In
recent quantifications of internal wave drag on barotropic tides using shallow
water models, parameterizations based on simple analytical considerations
and scale arguments have been used (e.g. Sjöberg & Stigebrandt 1992,
Gustafsson 2001, Jayne St. Laurent 2001, Egbert et al. 2004, Nycander
2005, Tanaka et al. 2007). There are also examples of direct numerical
simulations of internal tide generation using three-dimensional models (e.g.
Niwa & Hibiya 2001, Merrifield & Holloway 2002, Simmons et al. 2004, and
several others).

In this paper we investigate the extent to which energy can be transferred
from the atmosphere via barotropic motion to turbulent kinetic energy in the
deep water. One possibility is that internal waves are generated over a steep
topography, as happens with tides in the deep oceans and in sill fjords, and
another is that turbulence is generated in the bottom boundary layer. We
use a two-dimensional shallow water model forced by observed winds and air
pressure fields to estimate the energy loss from the barotropic motion due to
internal wave drag and bottom friction. The parameterization of wave drag
follows the so-called step model (Stigebrandt 1976, 1980b, 1999 Sjöberg
& Stigebrandt 1992, Gustafsson 2001, Johnsson et al. 2007). Opposing
the oceanic applications of Sjöberg & Stigebrandt (1992) and Gustafsson
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(2001), we expect the dominant influence of the first baroclinic mode, and
therefore we must consider the stratification of the whole water column.
A generalization of internal wave drag on barotropic currents for arbitrary
stratification given by Stacey (1984) is adapted to provide drag force in
a two-dimensional shallow water model. The validity of the step model was
recently challenged by St. Laurent et al. (2003); primary concerns were the
assumption of local non-interacting wave generation at each step and that
resolution dependence was found, causing the internal wave generation to
decrease as the resolution was increased. We will discuss this further in the
discussion section in the light of present results; worth noting, however, are
the experiences of Egbert et al. (2004) that the step model gives similar
internal wave drag as some other parameterizations.

This paper is structured as follows: the model and its implementation
are described in Section 2; the performance of the model is evaluated by
comparison with observed sea levels in Section 3. In Section 4 we present
the results of the simulations, and the paper ends with a discussion of the
results and their implications.

2. Method

2.1. Model description

The model is based on two-dimensional shallow water equations; hence,
density variations, non-linear interaction in vertical shear flow and non-
hydrostatic pressure are all disregarded. This, of course, severely limits the
realism of the results for a basin that is strongly stratified. However, the
aim here is not to realistically simulate the vertical current structure, but
to make an order of magnitude estimate of the possible energy conversion
from atmospherically forced barotropic motion to internal motion, and for
this purpose the shallow water approximations will most probably suffice.
A more severe limitation of the shallow water equations in the present
context is that parameterization of drag from bottom boundary layers
becomes rather dubious since the actual bottom near currents might not
be related to the barotropic flow.

The numerical scheme follows closely the classic model by Arakawa
& Lamb (1981). The following form of the momentum equations are
discretized,

∂v
∂t

+ qk× v∗ + ∇(K + Φ) =
F
h
, (1)

where h is height of the water column, v is the velocity vector, v∗ = vh is
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the flow vector and K = 1
2v

2 is the specific kinetic energy. The potential
vorticity q is defined as

q =
ζ + f

h
, (2)

where ζ is the vorticity and f is the Coriolis parameter, which in this case
is considered constant (f = 1.2 × 10−4 s−1). The pressure Φ is given by

Φ = g(h−D) +
Pa

ρ0
, (3)

where g = 9.8 m s−1 is the acceleration due to gravity, D is the equilibrium
water depth, Pa is the atmospheric pressure and ρ0 = 1010 kg m−3 is the
reference density of sea water. The body force F consists of three parts: the
wind force Fwind, bottom drag force Fb and internal wave drag force Fw.

The sea surface height is determined from the continuity equation

∂h

∂t
+ ∇ · v∗ = 0. (4)

The spatial discretization is done on a uniform C-grid and following
the Arakawa-Lamb scheme (Arakawa & Lamb 1981), which ensures energy
and potential enstrophy conservation. The Arakawa-Lamb scheme requires
a computational boundary condition on the tangential velocity at the solid
boundary, for which we used a free-slip condition. The temporal evolution
is computed with a third-order Runge-Kutta solver following Williamson
(1980). Body forces are applied explicitly.

Experimentally the drag force due to small-scale flow separation and bed
friction can be estimated from the current velocity squared at a fixed height
above the sea bed and a drag coefficient that depends on the structure of
the sea bed (e.g. Dyer 1986, Soulsby 1997). The first-order approximation
is to use this parameterization for the drag loss to the turbulent bottom
boundary layer Fb of the barotropic currents as well,

Fb = −Cd|v|v, (5)

where Cd is a dimensionless drag coefficient. There are frequent examples
of the use of the quadratic drag law in ocean tidal models (e.g. Egbert et al.
2004, Arbic et al. 2004, Tanaka et al. 2007, Weis et al. 2008). In a classic
variant of equation (5), commonly used in shelf seas applications, the drag
coefficient is a more or less weak function of depth through the introduction
of the depth-dependent Chézy coefficient or Manning number (e.g. Verboom
et al. 1992, Soulsby 1997, Umgiesser 1997, Jakobsen et al. 2002). We use



466 C. Nohr, B.G. Gustafsson

equation (5) with a constant drag coefficient, although we will investigate
the sensitivity of the results to varying values on the coefficient.

2.2. Derivation of the internal wave drag force

The basic assumption for the derivation of the wave drag parameter-
ization is that the depth changes abruptly from one grid cell to another,
thus forming a step, and that velocity must be zero at the vertical wall
defined by the step. Internal waves are added to satisfy this boundary
condition. The step-model was originally proposed for sill fjords, where the
sill itself constitutes the step (Stigebrandt 1976, 1980b), but was generalized
to a discrete two-dimensional grid of sea floor by Sjöberg & Stigebrandt
(1992). Stacey (1984) generalized the model by Stigebrandt (1976, 1980b)
to arbitrary continuous stratification. We use the work of Stacey (1984) to
formulate wave drag in the shallow water model.

We show the derivation of the internal wave drag parameterization in the
x-direction, since the derivation of the drag in the y-direction is completely
analogous. All effects of the Earth’s rotation on the internal waves are
disregarded; the justification and consequences of this will be discussed
later in this paper (see Section 5).

Consider two adjacent grid cells, one deeper with depth Hb and one
shallower with depth d. The velocity in the deeper grid cell is given by
the superposition of a barotropic wave defined by velocity amplitude u0,
frequency ω and wave number k0, and an infinite number of internal wave
modes ûn(z) of amplitudes an and wave numbers kn:

u(x, z, t) = u0 cos(ωt + k0x) +
∞∑

n=1

anûn(z) cos(ωt + knx). (6)

We assume that no internal waves are generated in the shallower grid
cell and therefore the velocity in the shallower grid cell is barotropic with
amplitude us. The boundary condition at the step (x = 0) becomes

u0 +
∞∑

n=1

anûn(z) =
{

us 0 ≥ z ≥ −d
0 −d > z ≥ −Hb

. (7)

Since the internal wave modes ûn are zero in the mean and the
orthogonal, the amplitudes are given by

an = us

0∫
−d

ûndz

0∫
−Hb

û2
ndz

. (8)
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Horizontal and vertical modes are related via the continuity equation

ûn =
1
k

dŴn

dz
. (9)

The vertical structure of the modes for arbitrary continuous stratifi-
cation can be found by solving the following vertical velocity eigenvalue
problem

d2Ŵn

dz2
+

N2

c2n
Ŵn = 0, (10)

where N2 = − g
ρ

dρ
dz is the buoyancy frequency (squared) and cn the wave

speed of mode n. The boundary conditions are

Ŵn(0) = Ŵn(−Hb) = 0. (11)

Thus, the horizontal velocity amplitudes (eq. (8)) can be calculated from
equations (9) and (10), and working out the energy density of each mode
from the amplitudes is straightforward:

En =
ρ

2
u2

sŴn(−d)2

0∫
−Hb

[
dŴn

dz

]2

dz

. (12)

Note that the energy density does not depend on the normalization of
Ŵn since any scale factor is eliminated. The energy flux radiating with
internal waves (per unit width) away from the step is given by

ε =
∞∑

n=1

cnEn, (13)

where cn is the group speed, which is equal to the phase speed since we
are only considering long waves. Dissipation from barotropic motion in the
x-direction in the shallow water model, say εSH , is given by

εSH = ρuiF
x
w∆s, (14)

where ui is the velocity, F x
w the drag force and ∆s the grid spacing. Follow-

ing the definition of the Arakawa C-grid, the velocity ui is defined at the
average depth of the two adjacent grid cells. By neglecting differences in sea



468 C. Nohr, B.G. Gustafsson

surface elevation we can express the velocity in the shallower grid cell us in
the model velocity ui,

usd = ui
1
2
(Hb + d). (15)

By equating εSH with−ε and substituting us with ui we get the following
expression for the wave drag in the x-direction:

F x
w = − ui

2∆s

(
Hb + d

2d

) ∞∑
n=1

cn
Ŵn(−d)2

0∫
−Hb

[
dŴn

dz

]2

dz

. (16)

The baroclinic drag coefficient rx
w = F x

w
ui

at grid point i, j can be
defined as

rx
w = − 1

2∆s

(
Hb + d

2d

) ∞∑
n=1

cn
Ŵn(−d)2

0∫
−Hb

[
dŴn

dz

]2

dz

, (17)

where the depths are calculated from the equilibrium depths of the adjacent
grid cells, and Ŵn and cn are computed for the deeper of the two cells.

A completely analogous expression is derived for baroclinic drag in the y-
direction. To write the wave drag in vector notation we can define a matrix
Rw that has the drag coefficients rx

w and ry
w for the x- and y-directions

respectively as diagonal elements, that is,

Fw = Rw · v. (18)

2.3. Derivation of the approximate drag force

In an approximately two-layer stratified basin like the Baltic Sea, it may
be possible to use a simplified form of the wave drag. It can easily be shown
that the total energy density of the internal waves is independent of the
stratification (see Sjöberg & Stigebrandt 1992). In our notation the total
internal wave energy density becomes

E =
ρ

2
u2

sd

(
1 − d

Hb

)
. (19)

If we use equation (15) and define H = 1
2(Hb + d) and ∆H = 1

2(Hb − d),
the energy density can be written as
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E = ρu2
i

1

1 −
(

∆H

H

)2 ∆H. (20)

If the first mode dominates, one can estimate the energy flux of the
internal waves by using the group speed of that mode, say cg, and derive
an expression for the wave drag by equating the energy flux of the internal
waves and the dissipation in the barotropic model, as in Section 2.2. The
result is

F x
w = −cg

1

1 −
(

∆H

H

)2

∆H

∆s
ui. (21)

There are practical advantages if this can be used, since only an estimate
of the first mode group speed is needed instead of continuous density profiles.
For long waves the group speed can be approximated by

cg =

√
g
∆ρ

ρ
hp

(
1 − hp

Hb

)
, (22)

where hp is the depth of the pycnocline and ∆ρ a typical difference between
surface and deep water density. Naturally cg = 0 if hp ≥ Hb.

2.4. Implementation

Three equidistant grids, 1 × 1 nm, 2 × 2 nm and 4 × 4 nm, were
interpolated from the bathymetry with an original resolution of 2 minutes
of longitude and 1 minute of latitude (Seifert et al. 2001). The 2 × 2 nm
bathymetry (shown in Figure 1) was used in all simulations, except those
testing the sensitivity of the results to changed horizontal resolution.
A sponge zone was added at the open boundary towards the North Sea by
adding 20 identical points westwards (see Figure 1). In this zone, velocity
and surface elevation were relaxed towards the external boundary condition
following the flow relaxation method devised by Martinsen & Engedahl
(1987). The open boundary towards the North Sea is forced by hourly
sea level observations from Hirtshals. We assume that the sea level changes
gradually from the observed level at the coast with the length scale of the
local Rossby radius. The velocity is specified according to Flather (1976).
Thus, the equations for sea level and currents along the open boundary are

dη

dy
= − f√

gD
η (23)
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and

u =
√

g

D
η. (24)

In the equation for sea level η, y is directed along the open boundary, f
is the Coriolis parameter, g is the acceleration due to gravity and D is the
depth.

The model is forced by geostrophic wind and air pressure fields with
a time resolution of 3 hours and a grid resolution of 1◦ × 1◦. The database
is available from the BALTEX Hydrological Data Centre (BHDC), and it
is here interpolated to fit the grid of the model domain. The wind stress
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Figure 1. The 2×2 nm model bathymetry, including the added sponge zone at the
border to the North Sea. The locations of the tide gauges used in this paper are
indicated. The abbreviations are: HH=Hirtshals, S=Simrishamn, Ö= Ölands
Norra Udde, L=Landsort, F=Forsmark and H=Helsinki. The hydrographic
stations used for calculating dynamic wave modes are indicated by light grey circles
and the legend for the lower case letters is a=BY2, b=BY5, c=BY15, d=BY31,
e=Gulf of Riga, f=LL11, g=F64, h=US5B and i=F9. The depths in the colour
scale are given in metres
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is calculated from the geostrophic wind in two steps. First, the geostrophic
wind is reduced to 10 m wind using w10 = M · wg. The reduction is
found by comparison with wind observations in central Baltic proper. The
conversion matrix used is

M =
[

0.645 0.215
0.229 0.645

]
. (25)

The wind force is calculated from

Fwind =
ρa

ρ0
Ca|w10|w10, (26)

where ρa = 1.25 kg m−3 is the density of air. The drag coefficient, Ca, is
computed following Smith (1980), i.e.

Ca =
{

1.1 × 10−3 |w10| < 6m s−1

(0.73 + 0.063|w10|) × 10−3 |w10| ≥ 6m s−1 . (27)

The main simulation period was chosen to be 1 January 1992 – 31 De-
cember 1992, a year with no major deep-water inflows. As this was also
a warm year with only limited ice cover, only limited effects of sea ice
on the momentum fluxes at the sea surface are expected. As a crude
estimate of the variability due to strength of stratification and interannual
variability in the winds, we also performed simulations for 1 January 1995
– 31 December 1995. The stratification was much stronger in 1995 than
in 1992.

In our standard case we use a bottom drag coefficient Cd = 3 × 10−3.
However, a series of simulations are performed varying the bottom drag
coefficient Cd, spatial resolution, wind stress and without wave drag. Also,
the simplified drag formula is tested.

2.5. Calculation of the baroclinic drag coefficient

Observed density profiles from 9 oceanographic stations (locations shown
in Figure 1) are used to calculate the vertical dynamic modes Ŵn and the
corresponding phase speeds cn. The data from each station are assumed
to be representative for a part of the Baltic Sea so that in all, the 9
stations cover the model domain within the sills. Figure 2 shows typical
winter and summer stratification in three regions in the Baltic Sea: the
Gotland Deep (BY15), the Landsort Deep (BY31) and the Åland Sea
(F064). A characteristic summer thermocline is seen at about 20 m and
a perennial pycnocline at about 60 m depth. Wave drag is not computed
for the Skagerrak and Kattegat. The procedure for calculating the wave
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Figure 2. Examples of typical vertical winter and summer stratifications from the
Gotland Deep (BY15), Landsort Deep (BY31) and Åland Sea (F064). Grey lines
– summer stratification, black lines – winter stratification

drag coefficients Rw are as follows: the depths Hb and d are determined for
each grid cell pair. The buoyancy frequency profile N is calculated either
as a summer (mean for the months May–August) or a winter (mean for
the months November–March) profile from the oceanographic station in the
vicinity of the grid cell. Summer and winter mean profiles are calculated
using data from the two simulation periods. Owing to the sparse data
coverage at stations BY31, F064, LL11 and RIGA, data from 1988–92
and 1993–97 had to be used. The vertical resolution is 5 m and linearly
interpolated to 1 m resolution. The profiles are truncated at the depth
of the deeper grid cell, i.e. at Hb. The vertical dynamic modes problem
is solved using numerical integration techniques, in this case Runge-Kutta
with the shooting method. The Runge-Kutta method uses a trial step to the
midpoint of an interval to cancel out lower-order error terms. The shooting
method is a method for solving a boundary value problem by reducing it
to the solution of an initial value problem; the analysis is described in e.g.
Press et al. (1992). The 10 first modes are calculated.

In the calculation with the approximate wave drag formula (eq. (21)),
we used a constant ∆ρ = 3 kg m−3 and hp = 65 m throughout the Baltic
Sea, although the figures are representative for the Baltic proper only.
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3. Model performance

Model results are validated against hourly data from five sea level
monitoring stations: Simrishamn, Landsort, Ölands Norra Udde, Helsinki
and Forsmark (locations shown in Figure 1). The stations are selected to
cover the main parts of the Baltic proper. The time-series of simulated
and observed sea levels for the whole simulation are drawn in Figure 3.
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Figure 3. Observed and modelled sea levels at Forsmark (a), Helsinki (b),
Landsort (c), Ölands Norra Udde (d) and Simrishamn (e)
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Since the model starts with zero sea level everywhere, there is a spin-
up period of about 20 days before the volume of the Baltic is adjusted
to the boundary conditions. The model captures most of the sea level
variations, but generally underestimates the magnitude of short, extreme
sea level events. The high frequency variability is larger in the Bay of
Bothnia and Gulf of Finland (Forsmark and Helsinki, Figure 3a and 3b),
and in the southern Baltic (Simrishamn, Figure 3e) than in the central
Baltic (Landsort, Figure 3c) owing to the wind set-up. There is a spurious
discrepancy between the model and observations at about 320–340 days at
Forsmark that is difficult to explain as the model performs well at other
locations during this time.

Power spectra of modelled and observed sea levels at the five sea level
monitoring stations are shown in Figure 4. The computation was done with
a 256 h long Hanning window with 50% overlap, which gave a total of
67 independent determinations. At all positions, semidiurnal tides (M2 =
12.42 h) are seen in both the observed and simulated sea levels. There is
a tendency towards a diurnal tide in some of the sea level observations
that does not show up in the model results, as the diurnal tidal signal is
primarily locally driven and not imported from the North Sea (Jönsson
et al. 2008). As indicated above in the time-series plots (Figure 3), the
model underestimates variance in the high-frequency part of the spectrum.
In relative terms, the performance at high frequencies is better at Forsmark
and Simrishamn than at Landsort and Ölands Norra Udde. The probable
cause is that the variability close to the nodal line of oscillations depends
to a larger degree on small-scale features in forcing and topography than on
those near the anti-nodes. The time resolution of the forcing prevents the
model from capturing periods shorter than 3 hours. A sea level response
longer than 10 hours has an energy comparable with the observations, and
at some stations the model results show comparable energy levels for periods
as short as 4–5 hours. Figure 5 shows coherence and phase spectra. Even
though power density spectra indicate that the model produces a significant
amount of energy at a relatively high frequency, coherence decreases for
periods shorter than 20 h and is less than ca 0.5 for periods shorter than
10 hours. The coherence between modelled and observed sea levels is high
and the phase differences are small at all stations for periods longer than 20
hours. For the really long periods the phase difference increases somewhat.
Especially in the central Baltic proper, namely Landsort and Ölands Norra
Udde, observed sea levels have a daily cycle that is not picked up by the
model. The driving forces behind the daily cycle are evidently not resolved
by the model.
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Figure 4. Spectra of simulated and observed sea levels at Forsmark (a), Helsinki
(b), Landsort (c), Ölands Norra Udde (d) and Simrishamn (e)

A quantitative skill assessment of the standard case and a number of
simulations with varying bottom drag coefficient, wind forcing and wave
drag is made in terms of correlation squared r2 and root mean squared
(RMS) error. To avoid corruption from the spin-up of the model all statistics
are computed excluding the initial 30 days, leaving 8040 data points for
the statistics. Since changing friction and resolution of the model greatly
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Figure 5. Coherence and phase spectra between observed and simulated sea levels
at Forsmark (a), Helsinki (b), Landsort (c), Ölands Norra Udde (d) and Simrishamn
(e). Solid lines – coherence, dashed lines – phase spectra

influence the filling and emptying of the Baltic through the Danish Straits,
we also made a simple estimate of the high-frequency part of the error
that to a larger degree reflects the effects of changing parameters on the
internal oscillations of the Baltic Sea (e.g. Samuelsson & Stigebrandt 1996).
The high-frequency part of the RMS error is estimated by first cutting the
time-series into 240 h long time-slices, then computing the error variance
for each time-slice, and finally computing the RMS error from the average
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of these variances, i.e.

RMSh =

√√√√ 1
M

M∑
m=1

1
N

N∑
n=1

(
ηmod

n,m − η−mod
m − ηobs

n,m + η−obs
m

)2
, (28)

where ηmod and ηobs are the modelled and observed sea levels respectively.
N = 240 is the number of observations in each of the M = 33 slices.
Barred quantities are averaged for each slice. In addition to the correlation
and RMS computations, we performed a Kruskal-Wallis non-parametric
ANOVA test to discover the simulations that gave a significantly different
result compared to the simulation with the standard parameter setting (i.e.
p< 0.05 for the null hypothesis that they are similar). We also performed the
test between simulations and observations, finding that all the simulation
results were significantly different from the observations.

The correlations and RMS errors for all runs are summarized in Tables 1
and 2. The results of the Kruskal-Wallis test are also listed in Table 1, which
shows that only a few of the test cases differ significantly from the control

Table 1. Correlation (r2) between hourly observed and modelled sea level time-
series (8040 data points) from each of the simulations. The highest correlations
are given in bold. The cases that are significantly different (p < 0.05 for the
null hypothesis that they are similar) from the standard case are marked with
an asterisk. The 1995 simulation is not included in the statistical analysis

Stations Forsmark Helsinki Landsort Ölands Simrishamn
Norra Udde

Cd = 3 × 10−3 0.907 0.913 0.947 0.926 0.893
Cd = 1 × 10−3 0.908∗ 0.902∗ 0.939∗ 0.920∗ 0.874
Cd = 2 × 10−3 0.911 0.912 0.947 0.926 0.889
Cd = 4 × 10−3 0.901 0.911 0.944 0.922 0.894
Cd = 6 × 10−3 0.890 0.904 0.937∗ 0.914∗ 0.892
Cd = 8 × 10−3 0.879∗ 0.897∗ 0.929∗ 0.905∗ 0.886∗

no wave drag 0.907 0.912 0.947 0.926 0.895
approx. wave drag 0.906 0.915 0.947 0.926 0.895
Fw + 25% 0.907 0.916 0.951 0.936 0.913
Fw + 50% 0.905 0.915 0.952 0.943 0.923
Fw + 75% 0.894 0.906 0.950 0.944 0.921
4 × 4 nm 0.854 0.861 0.902∗ 0.876∗ 0.878
1 × 1 nm 0.909 0.915 0.949 0.928 0.895
1995 0.926 0.921 0.926 0.915 0.902
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Table 2. RMS error (in cm) computed from hourly observed and modelled sea
levels (8040 data points) from each of the simulations. The RMS errors computed
from 240 h time-slices are given in parentheses. Lowest RMS errors are indicated
in bold (1995 excepted). The standard deviations of the observed time series, both
in total and using 240 h slices, are indicated for comparison

Stations Forsmark Helsinki Landsort Ölands Simrishamn
Norra Udde

Standard dev. 18.5 (9.27) 18.0 (10.1) 14.5 (6.11) 14.6 (7.77) 16.5 (12.3)

Cd = 3 × 10−3 7.83 (5.86) 7.33 (6.60) 4.71 (3.29) 5.57 (4.33) 7.42 (6.25)

Cd = 1 × 10−3 7.90 (6.12) 8.28 (7.02) 6.05 (3.55) 6.58 (4.18) 8.43(5.99)

Cd = 2 × 10−3 7.61 (5.86) 7.45 (6.66) 4.95 (3.23) 5.72 (4.16) 7.64 (6.06)

Cd = 4 × 10−3 8.14 (5.90) 7.44 (6.62) 4.78 (3.41) 5.66 (4.51) 7.40 (6.42)

Cd = 6 × 10−3 8.74 (6.01) 7.82 (6.69) 5.18 (3.65) 6.04 (4.79) 7.58 (6.70)

Cd = 8 × 10−3 9.24 (6.11) 8.23 (6.76) 5.63 (3.83) 6.46 (5.00) 7.84 (6.91)

no wave drag 7.82 (5.84) 7.38 (6.66) 4.72 (3.30) 5.54 (4.31) 7.36 (6.19)

approx. wave drag 7.85 (5.90) 7.26 (6.54) 4.72 (3.30) 5.56 (4.33) 7.37 (6.22)

Fw + 25% 7.76 (5.92) 7.26 (6.66) 4.61 (3.26) 5.21 (4.07) 6.79 (5.70)

Fw + 50% 7.88 (6.13) 7.43 (6.90) 4.62 (3.30) 4.99 (3.91) 6.55 (5.55)

Fw + 75% 8.39 (6.76) 8.12) (7.64) 4.84 (3.52) 5.03 (4.00) 6.97 (6.05)

4 × 4 nm 10.25 (6.24) 9.43 (7.10) 6.81 (4.14) 7.52 (5.20) 8.29 (6.92)

1 × 1 nm 7.78 (5.88) 7.24 (6.54) 4.62 (3.26) 5.48 (4.32) 7.36 (6.24)

1995 7.78 (5.49) 8.59 (6.70) 6.74 (3.93) 7.57 (5.82) 8.03 (6.66)

run. The correlation between observed and simulated sea levels is generally
quite high, and RMS errors are less than 50% of the standard deviation
of the observed sea level records. The highest correlation and lowest RMS
errors were found at Landsort and the second-highest and -lowest at Ölands
Norra Udde for the cases with 25%–50% increased wind stress. It is
quite evident that increased wind forcing improves the correlation for
sea level stations within the Baltic proper. However, for Forsmark, 25
and 50% increases in wind stress did not change the correlation at all,
and for a 75% increase the correlation decreased. When the bottom drag
coefficient was changed from 1 to 8 × 10−3, highest correlations and lowest
RMS errors were found for the standard case for all the stations, except
Forsmark and Simrishamn where the extremes occurred for Cd = 2 × 10−3

and Cd = 4 × 10−3 respectively. It is evident that bottom stress on the
flows through the Åland Sea is important for the sea level variations at
Forsmark, and minimal RMS error for high frequencies only are in general
shifted towards a lower bottom drag coefficient, Cd = 2 × 10−3. The most
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extreme difference is at Simrishamn where the overall RMS error was lowest
for Cd = 4 × 10−3 and the lowest-high frequency RMS error was found
for Cd = 1 × 10−3. Increasing the grid resolution from 2 × 2 to 1 × 1 nm
produced only trivial changes in the correlation, but lowering the resolution
to 4 × 4 nm gave a significant reduction. The difference between the total
and high frequency RMS errors indicate that lowering the resolution reduces
the accuracy primarily at low frequencies. We can therefore conclude that
the flows through the Danish Straits are less correctly simulated in the coarse
resolution case. The simulation with no wave drag and the approximate
wave drag (eq. (21)) gives no change in the correlation compared to the
standard case, which indicates that wave drag has only a slight influence on
coastal sea levels. The 1995 simulation reproduces sea levels with the same
level of accuracy as the 1992 one.

4. Results

4.1. Dissipation of energy from barotropic motion

The horizontal distribution of the time-averaged dissipation of energy
from the barotropic motion by internal wave drag and bottom friction is
drawn in Figure 6. The temporally averaged dissipation by wave drag is
large along the 50 m isobath off the eastern and north-western coasts of the
Baltic proper (Figure 6a). This enhancement is possible due to the vertical
distribution of depths, the stratification and also the simulated coastal jets.
The results are not shown here but they are in accordance with Zhurbas
et al. (2006). The spatial distribution is quite patchy and a number of
hot spots can be identified, usually associated with abrupt changes in the
bathymetry. For example, the entrance area of the Gulf of Finland seems
to be one of these. Closer inspection of the simulated currents (not shown)
reveals a shallow coastal jet flowing northwards along the eastern coast of
the Baltic proper. When the coastal current enters the Gulf of Finland the
barotropic motion seems to dissipate within a short distance. As expected,
bottom stress is high at shallow depths close to the shore. Especially along
the eastern coasts of the Baltic proper, the coastal current mentioned above
gives rise to a large bottom stress. This is also the case in the southern Baltic
Sea, where coastal currents are strong. Further, in narrow straits like the
Åland Sea, and not least, in the narrow Danish straits and Kattegat (not
shown), dissipation by bottom stress is large due to the strong currents.

We have computed averages from four areas, indicated by the letters A–
D in Figure 6. Areas A and B cover the two deepest basins, the Landsort
Deep (monitoring station BY31) and the Eastern Gotland basin (BY15),
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respectively. Area C covers the Baltic proper without the marginal gulfs and
Box D covers the Åland Sea. The energy losses due to internal wave drag
and bed friction averaged in the different areas are presented in Table 3.
To get an overview of the difference between shallow and deep areas, we
computed the average dissipation due to internal wave drag and bottom
stress in selected depth intervals. The dissipation by bottom stress is much
smaller in deeper than in shallower water, as expected from the above spatial
distributions. The dissipation due to wave drag seems to be of a similar
magnitude in deep water as in shallow water areas, which makes the relative
contribution of internal wave drag to the loss of barotropic energy larger in
deep water areas. The detailed results for the different areas are quite
different. In the Baltic proper as a whole (area C), the mean dissipation to
internal waves is 0.23 mWm−2, which is only a fraction of the dissipation by
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Figure 6. Spatial variation of time-averaged dissipation by internal wave drag
(panel a) and by bottom stress (panel b). Also indicated are depth contours for
20 m (white) and 50 m (black). Area A covers the Landsort Deep, B the Gotland
Deep, C the Baltic proper and D the Åland Sea

bottom stress (1.3 mW m−2). However, dissipation by wave drag remains
approximately constant for all depth intervals, so that in waters deeper
than 50 m the two causes of dissipation are of comparable magnitude
(∼ 0.2–0.4 mW m−2). The largest dissipation by wave drag is found at
greater depths in area D, up to about 2 mW m−2. In areas A and B, where
two of the deepest areas are located, dissipation by wave drag is higher or
equal to that from bottom stress, even though in area B the dissipation by
wave drag decreases with depth for areas deeper than 100 m.

The temporal variability of dissipation by internal wave drag is quite
large, which is exemplified by the time-series for area C in Figure 7.
The average for the area is shown by a thin dashed line. During strong
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Table 3. Spatial and temporal averages of dissipation due to internal wave drag
and bottom drag in the standard case. Averages are calculated for sub-areas defined
by different depth intervals; the ‘All’ column refers to all depths, i.e. to the whole
area

Internal wave drag [mW m−2]

Area All 0–50 m 50–100 m 100–150 m 150–200 m 200–250 m

A 0.61 0.44 0.72 0.62 0.41 0.95

B 0.29 0.32 0.59 0.25 0.15 0.10

C 0.23 0.21 0.24 0.26 0.26 0.28

D 0.43 0.22 1.09 2.08 2.07 0.88

Bottom stress [mW m−2]

Area All 0–50 m 50–100 m 100–150 m 150–200 m 200–250 m

A 1.10 3.15 0.53 0.74 0.38 0.33

B 0.50 1.90 1.25 0.20 0.10 0.11

C 1.55 2.82 0.49 0.36 0.22 0.15

D 4.09 4.74 1.48 1.24 0.76 0.50
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Figure 7. Horizontally averaged dissipation by internal wave drag for box C, the
Baltic proper (Fig. 6a). The thin dashed line indicates the annual mean dissipation
by internal wave drag (0.23 mW m−2)
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wintertime events, the internal wave drag reaches levels of almost 3 mWm−2,
or a factor of ten larger than the average. The mean duration of periods
when the dissipation is larger than average is 44 hours for area C and in
total dissipation is above average during slightly less than 30% of the time.
The results for the other areas are similar.

The seasonal signal is even more evident from the monthly mean of the
dissipation by internal wave drag for areas A–D (see Figure 8). Maximal
monthly dissipation is almost one order of magnitude larger than the
minimal.
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Figure 8. Monthly mean of horizontally averaged dissipation by internal wave
drag for the Landsort Deep (area A), the Gotland Deep (area B), the Baltic proper
(area C) and the Åland Sea (area D)

4.2. Contribution to mixing

Horizontal averages of dissipation are computed for areas deeper than
a specified depth. The dissipation by wave drag and bottom stress as
a function of depth is drawn in Figure 9 for areas A, B and D. The dissipation
by wave drag is subdivided into the contributions from the 1st and 2nd,
and the sum of the 3rd–10th dynamic modes. Under the bold assumption
that the dissipation occurring below a certain depth level contributes to
mixing only there, and not above that level, we can regard this (Figure 9)
as the supply of mechanical energy. In that case, the fraction given by the
Richardson flux number (Rf ≈ 0.05–0.2) could be used for mixing. We see
clearly that the dissipation below 50 m or so is too weak to explain the
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total supply needed of some 2.1 mW m−2 (Liljebladh & Stigebrandt 2000),
mentioned in the Introduction. However, at greater depths the required
energy supply for mixing seems to be rather smaller. Axell (1998) computed
the energy supply needed to sustain work against the buoyancy forces in the
deepest parts of the Landsort Deep (area A) and Eastern Gotland Deep
(area B) from changes in density during stagnation periods. Assuming
Rf = 0.05, Axell (1998, Figure 10) obtained an average energy supply for
mixing of about 5 and 0.6 mWm−2 to the deep water below 150 m in areas A
and B respectively. The model results give respective average dissipations
of wave drag of 0.62 and 0.14 mW m−2 for those areas below 150 m depth
(see Figure 9). Although this is only 12.5% and 25% of the needed supply,
it is clearly an indication that processes involving internal wave generation
by barotropic currents can be important.

The vertical variation of dissipation due to internal wave drag is quite
different in the different areas (Figure 9). In area A the dissipation increases
with depth, while a definite decrease to zero is found in area B. This
conforms broadly with Axell (1998), who found that the work against
buoyancy forces decreased with depth in both areas; however, he found
that the decrease started at above 300 m depth in area A, a situation that
may not be resolved in the present model. In area D, there is a definite
maximum in dissipation around 100 m depth and the profile is quite different
from the other two areas. The contribution seems to be dominated by
the 1st dynamic mode, most probably because of the strong generation at
the two sills delimiting the basin water. The influence from higher order
modes becomes prominent at greater depths, especially in area B, where
they contribute about 40%, but also in area A.
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Figure 9. Spatial average of dissipation due to bottom stress and wave drag over
areas covering depths greater than the depth on the y-axis. Total wave drag and
the contributions from the 1st, 2nd and the sum of 3rd–10th dynamic modes are
drawn. There is one panel each for the areas A, B and D as defined in Figure 6
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The bottom stress contribution to mixing in deep waters should be
interpreted with great caution, since most probably the near-bottom
currents here are determined to a large extent by the baroclinic response.

4.3. Sensitivity

There are uncertainties in the parameters and the forcing of the
model that could not be fully resolved by comparison with the sea level
observations above. Therefore, we make an assessment of the sensitivity
of the dissipation results. The averaged dissipations due to wave drag and
bottom drag for the different model experiments are shown in Tables 4
–7. The experiments with different bottom drag coefficients show that, in
general, dissipation by both wave drag and bottom stress decreases with
higher drag coefficient. The decrease in dissipation by bottom stress does
not apply to area B, however, where instead dissipation increases with
increasing drag coefficient. The sensitivity of dissipation by bottom stress to
the drag coefficient decreases with depth, while the sensitivity remains high
for dissipation by wave drag in deep water. Dissipation by bottom stress is
quite sensitive to the absence or the parameterization of internal wave drag.
The extreme cases are, for example, in area D, where removing wave drag
causes more than a doubling of dissipation by bottom drag at greater depths,
and the approximate wave drag reduces it by half. The approximate wave
drag causes significantly larger dissipation in deep areas than the full wave
drag formulation, showing that it is probably not applicable to estimates
of the energy supply to deep water mixing. Increased wind stress increases
dissipation due to both wave drag and bed friction. At greater depths, they
typically double when the wind stress is increased by 50%.

Dissipation due to wave drag systematically decreases with higher
spatial resolution, while changes of dissipation due to bed friction are not
systematic. The sensitivity is modest when all depths are included. The
changes are larger at greater depths; the most extreme ones are below 200 m
in area D, where dissipation due to wave drag decreases by a factor of 4.5
on going from 4 × 4 nm to 1 × 1 nm resolution. The deeper regions of
area A are less sensitive to horizontal resolution with only modest changes
in dissipation. At greater depths in area B decreased dissipation by wave
drag seems to be compensated by increased dissipation by bottom stress.
The largest decrease is seen from 2 to 1 nm for dissipation due to wave drag,
which applies to all areas.

The simulation of 1995 gives a consistently higher dissipation due to
both wave drag and bed friction than the 1992 simulation. In area A
dissipation is lower at greater depths, and in area C the dissipation due
to wave drag shows only small changes or none at all when bed friction
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Table 4. Spatial average in area A of dissipation by internal wave drag and bottom
stress over sub-areas deeper than the depth given in the table

Internal wave drag [mW m−2] Bottom stress [mW m−2]

0 m 50 m 100 m 150 m 200 m 0 m 50 m 100 m 150 m 200 m

Cd = 3 × 10−3 0.61 0.65 0.62 0.62 1.17 1.10 0.57 0.59 0.36 0.30

Cd = 1 × 10−3 1.05 1.10 1.02 1.05 2.01 1.19 0.41 0.40 0.26 0.24

Cd = 2 × 10−3 0.76 0.81 0.76 0.77 1.46 1.15 0.52 0.53 0.33 0.29

Cd = 4 × 10−3 0.52 0.56 0.53 0.52 0.98 1.05 0.59 0.62 0.37 0.30

Cd = 6 × 10−3 0.40 0.44 0.42 0.40 0.75 0.98 0.61 0.64 0.38 0.29

Cd = 8 × 10−3 0.33 0.36 0.35 0.33 0.62 0.92 0.61 0.64 0.38 0.29

no wave drag 0.00 0.00 0.00 0.00 0.00 1.76 1.22 1.15 0.91 1.47

approx. wave drag 0.89 1.11 1.28 1.19 1.55 0.93 0.29 0.26 0.13 0.07

Fw + 25% 0.84 0.90 0.86 0.88 1.67 1.63 0.90 0.94 0.59 0.52

Fw + 50% 1.09 1.18 1.14 1.18 2.25 2.26 1.32 1.37 0.89 0.80

Fw + 75% 1.38 1.50 1.46 1.54 2.97 3.06 1.87 1.96 1.31 1.20

4 × 4 nm 0.65 0.71 0.69 0.77 1.24 0.97 0.50 0.48 0.37 0.17

1 × 1 nm 0.53 0.55 0.52 0.53 1.05 1.08 0.61 0.64 0.38 0.39

1995 0.61 0.63 0.54 0.51 0.96 1.36 0.66 0.58 0.33 0.28

Table 5. Spatial average in area B of dissipation by internal wave drag and bottom
stress over sub-areas deeper than the depth given in the table

Internal wave drag [mW m−2] Bottom stress [mW m−2]

0 m 50 m 100 m 150 m 200 m 0 m 50 m 100 m 150 m 200 m

Cd = 3 × 10−3 0.29 0.28 0.19 0.14 0.10 0.50 0.41 0.15 0.10 0.11

Cd = 1 × 10−3 0.44 0.43 0.30 0.22 0.17 0.32 0.25 0.09 0.07 0.08

Cd = 2 × 10−3 0.34 0.34 0.23 0.16 0.12 0.44 0.35 0.13 0.09 0.10

Cd = 4 × 10−3 0.25 0.25 0.16 0.12 0.08 0.52 0.44 0.17 0.12 0.11

Cd = 6 × 10−3 0.20 0.20 0.13 0.10 0.07 0.55 0.47 0.19 0.13 0.12

Cd = 8 × 10−3 0.17 0.17 0.11 0.08 0.06 0.55 0.48 0.20 0.14 0.12

no wave drag 0.00 0.00 0.00 0.00 0.00 0.83 0.74 0.37 0.25 0.24

approx. wave drag 0.39 0.42 0.34 0.30 0.28 0.40 0.29 0.05 0.03 0.03

Fw + 25% 0.39 0.39 0.26 0.18 0.13 0.79 0.66 0.24 0.17 0.16

Fw + 50% 0.51 0.50 0.34 0.24 0.17 1.16 0.97 0.36 0.25 0.24

Fw + 75% 0.64 0.64 0.43 0.30 0.21 1.65 1.38 0.53 0.36 0.34

4 × 4 nm 0.30 0.29 0.20 0.17 0.14 0.56 0.39 0.13 0.08 0.09

1 × 1 nm 0.24 0.24 0.15 0.10 0.07 0.49 0.40 0.17 0.12 0.12

1995 0.36 0.36 0.25 0.18 0.12 0.78 0.67 0.27 0.18 0.18
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Table 6. Spatial average in area C of dissipation by internal wave drag and bottom
stress over sub-areas deeper than the depth given in the table

Internal wave drag [mW m−2] Bottom stress [mW m−2]

0 m 50 m 100 m 150 m 200 m 0 m 50 m 100 m 150 m 200 m

Cd = 3 × 10−3 0.23 0.25 0.27 0.29 0.44 1.55 0.43 0.32 0.21 0.17

Cd = 1 × 10−3 0.44 0.45 0.45 0.49 0.75 1.88 0.35 0.25 0.16 0.13

Cd = 2 × 10−3 0.29 0.31 0.33 0.36 0.55 1.67 0.41 0.30 0.19 0.16

Cd = 4 × 10−3 0.19 0.21 0.23 0.25 0.37 1.45 0.45 0.34 0.22 0.17

Cd = 6 × 10−3 0.15 0.17 0.18 0.20 0.29 1.32 0.46 0.35 0.24 0.17

Cd = 8 × 10−3 0.12 0.14 0.15 0.17 0.24 1.23 0.46 0.36 0.25 0.18

no wave drag 0.00 0.00 0.00 0.00 0.00 1.77 0.69 0.59 0.47 0.62

approx. wave drag 0.21 0.38 0.59 0.63 0.70 1.60 0.36 0.16 0.08 0.04

Fw + 25% 0.30 0.34 0.36 0.40 0.63 2.24 0.68 0.52 0.34 0.28

Fw + 50% 0.39 0.43 0.47 0.52 0.84 3.08 0.97 0.75 0.50 0.41

Fw + 75% 0.49 0.54 0.60 0.67 1.09 4.14 1.39 1.07 0.73 0.61

4 × 4 nm 0.28 0.30 0.32 0.40 0.44 1.65 0.45 0.32 0.20 0.11

1 × 1 nm 0.16 0.18 0.19 0.21 0.36 1.26 0.38 0.32 0.21 0.20

1995 0.26 0.28 0.28 0.29 0.40 1.85 0.62 0.40 0.26 0.21

Table 7. Spatial average in area D of dissipation by internal wave drag and bottom
stress over sub-areas deeper than the depth given in the table.

Internal wave drag [mW m−2] Bottom stress [mW m−2]

0 m 50 m 100 m 150 m 200 m 0 m 50 m 100 m 150 m 200 m

Cd = 3 × 10−3 0.43 1.34 1.83 1.56 0.88 4.09 1.30 0.95 0.65 0.50

Cd = 1 × 10−3 0.76 2.25 2.97 2.55 1.34 4.84 1.04 0.72 0.53 0.35

Cd = 2 × 10−3 0.53 1.62 2.18 1.86 1.02 4.41 1.21 0.86 0.60 0.43

Cd = 4 × 10−3 0.37 1.16 1.61 1.38 0.79 3.86 1.36 1.01 0.69 0.55

Cd = 6 × 10−3 0.30 0.95 1.34 1.16 0.67 3.51 1.42 1.10 0.76 0.64

Cd = 8 × 10−3 0.25 0.82 1.17 1.02 0.60 3.27 1.46 1.16 0.82 0.70

no wave drag 0.00 0.00 0.00 0.00 0.00 4.48 2.32 2.20 1.63 1.11

approx. wave drag 0.56 2.59 4.42 4.33 3.80 4.00 0.81 0.31 0.25 0.28

Fw + 25% 0.55 1.72 2.37 2.04 1.16 5.88 1.91 1.41 0.98 0.77

Fw + 50% 0.68 2.14 2.96 2.57 1.49 7.94 2.65 1.98 1.39 1.11

Fw + 75% 0.84 2.63 3.66 3.20 1.88 10.61 3.58 2.72 1.94 1.58

4 × 4 nm 0.44 1.27 2.59 2.44 2.75 4.30 1.10 0.79 0.55 0.58

1 × 1 nm 0.38 1.23 1.41 0.98 0.48 3.92 1.45 0.96 0.66 0.55

1995 0.44 1.43 2.02 1.74 0.97 4.25 1.80 1.34 0.90 0.67



488 C. Nohr, B.G. Gustafsson

increases. Although changes are large in some areas, they are consistently
so both for internal wave drag and bottom drag, indicating that although
stratification was stronger, differences in wind forcing between the years is
at least as important. Ranges in natural variability can be of the order of
25–50% in the dissipation by wave drag indicated by averages from the two
years.

5. Discussion

We have shown that the transfer of energy from low-frequency, wind-
forced barotropic motions to internal waves is potentially an important
driver of diapycnal mixing in the Baltic Sea. However, we get an average
dissipation from internal wave drag over stratified parts (depth > 50 m) of
the Baltic proper of about 0.25 mW m−2 (Table 6), and that is substantially
less than the required energy supply of 2.1 mW m−2 (Liljebladh & Stige-
brandt 2000). The sensitivity study shows that this can be an underestimate
and the model can give up to 0.4 mW m−2 without significantly reducing
performance in reproducing observed sea levels. However, there are no
simple means of further increasing the dissipation by internal wave drag, i.e.
by increasing wind speeds or changing drag coefficients. The estimates of
dissipation by internal wave drag at depth in areas A and B were compared
to the required energy supply estimated by Axell (1998). He estimated
that about 5 and 0.6 mW m−2 needed to be supplied to these areas below
150 m depth compared to the dissipation by internal waves of 0.62 and
0.14 mW m−2. The sensitivity analysis indicates a large uncertainty in the
dissipation here. Taking an extreme case: the dissipation in area A is quite
sensitive to depth and wind forcing, so if we limit the average to deeper areas
than 200 m and assume that wind stress should be increased by 50%, the
dissipation becomes 2.25 mW m−2. In the high-wind speed case, dissipation
due to wave drag is about 0.24 mW m−2 in area B.

An uncertainty in the comparison between estimates of the energy
supply required to explain the observed changes in stratification with our
computations of the energy supply is that the former are calculated using
an uncertain Richardson flux number (Rf ), or mixing efficiency. Liljebladh
& Stigebrandt (2000) used Rf = 0.06 and Axell (1998) used Rf = 0.05, but
values up to Rf = 0.17, originating from Osborn (1980), are commonly
used. Arneborg (2002) suggested an intermediate value of Rf = 0.11
from theoretical considerations, which was recently confirmed in laboratory
experiments by Prastowo et al. (2009). In any case, differences by a factor of
three in the various estimates of Rf may imply the even greater importance
of the energy supply to mixing from wind-forced internal waves.
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The parameterization of internal wave drag is derived from a much
simplified theory, and the consequences of this need to be discussed. In
the parameterization of wave drag force we neglect the fact that internal
waves are generated on both sides of the step. The energy density of the
waves on the shallow side is, however, much less than on the deep side.
Interpreting the idealized analysis by St. Laurent et al. (2003), it seems
that neglecting internal waves on the shallow side of the step may potentially
underestimate the wave drag by some 20%.

The use of a simple quadratic law (eq. (5)) to parameterize the drag due
to small-scale flow separation (form drag) and bed friction is rather crude.
This is indeed quite true for the Baltic Sea, with its large variations in
bottom depths and its very large areas of stratification. In the non-stratified
case, there exist more complex parameterizations that are probably more
accurate, e.g. Mofjeld (1988), but in the stratified regions a vertically
resolved stratified model would be necessary for accurate predictions of
bottom drag. Since any parameterization of bottom drag would involve
free parameters due to the lack of information about the true bottom
roughness, an uncertainty would still remain. Moreover, bottom drag would
still predominantly occur in shallow regions, where current speeds are large
and therefore have a dominant effect on coastal sea level.

The effects of the Earth’s rotation are not taken into account, which
could cast doubt on long-period oscillations. There are, however, examples
of similar parameterizations being used to quantify internal wave generation
from sub-inertial tides (e.g. Tanaka et al. 2007). The generation itself should
be relatively well described by the non-rotating model if no interference
occurs, and this would be the case if the waves dissipate at generation or at
least within an oscillation period typical of the driving force. Our hypotheses
are that the rough, complex topography favours rather rapid breaking of
the internal waves and that the lack of phase-locked frequencies in the
wind forcing further decreases the probability of interference. The ultimate
test would naturally be a measurement programme that investigates the
generation processes in the Baltic proper. Arneborg (2000) performed
a derivation of internal wave generation at a sill in a channel from slowly
oscillating barotropic flows, taking into account the generation of baroclinic
Kelvin waves. The formula he obtained had the same functional dependence
on stratification and barotropic flow as the original step model formulation
(Stigebrandt 1976).

All the steps between the grid cells are treated as autonomous wave
makers in that we do not consider any interaction between waves generated
in adjacent cells. In support of this assumption, it was recently shown
experimentally that two very closely spaced sills (about 1 km or 1/7 of the
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internal Rossby radius) generated internal tides without interaction (Johns-
son et al. 2007). This result was obtained by comparing the theoretical
energy transfer with observed tidal currents, sea level and stratification.

St. Laurent et al. (2003) showed that the calculations of internal tide
generation using the step-model can be sensitive to the resolution. In our
case, this would be manifested as sensitivity changes of the grid resolution
used in the model. In our simulations, a change in grid size from 4,
2 and 1 nautical miles systematically decreased the average dissipation
due to wave drag, but the total changes were not larger than the other
uncertainties. The comparison of dissipation in the deep basins was also
somewhat difficult because they are quite small, so using the 4 × 4 nm
grid barely resolves the deeps. Also, there is no 1 × 1 nm resolution grid
available, so this was constructed by interpolating the 2×2 nm grid and thus
did not contain additional roughness that could be present on a finer scale.
Thus, it was not possible with the present model set-up to make definite
calculations regarding the sensitivity of the grid resolution to the internal
wave generation parameterization itself, so this will have to be resolved in
a future investigation.

Döös et al. (2004) proposed a parameterization of drag force in shallow
water models that takes into account the loss due to flow separation
resulting from resolved topographic obstacles. The functional form of the
parameterization resembles wave drag. The discrete form of the drag force
in the x-direction according to Döös et al. (2004), say F x

D, is given by

F x
D = −Cs|u|Hb − d

∆s
u. (29)

This has clear similarities with the approximate wave drag derived in
this paper (eq. (21)). The obvious difference between the drag forces is
that the slope friction parameterization is scaled with the current speed,
while the wave drag is scaled with the internal group speed. Given that
Döös et al. (2004) found an optimal fit to observed sea level variations for
CS of between 15 and 26 and that the current speed is typically at least
one order of magnitude less than the group velocity for long internal waves
of the first mode, the two parameterizations give drag forces of a similar
order of magnitude. We did not repeat the detailed calibration to observed
sea levels that Döös et al. (2004) performed, but according to our results,
using the approximate wave drag does not improve the model’s capability to
reproduce the observed sea level time-series. The cause of this discrepancy
is most probably that the primary influence on sea levels comes from drag
in shallow regions in straits and close to coasts, and here the approximate
wave drag is zero in contrast to the slope-friction.
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