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Abstract
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Daya Bay (DYB), China. The results show that these approaches divided water
quality in DYB into two groups: stations S3, S8, S10 and S11 belong to cluster A,
which lie in Dapeng Cove, Aotou Harbor and the north-eastern part of DYB, where
water quality is related mainly to anthropogenic activities. The other stations
belong to cluster B, which lie in the southern, central and eastern parts of DYB,
where the quality is related mainly to water exchange with the South China Sea.
Cluster analysis yields good results as a first exploratory method for evaluating
spatial difference, but it fails to demonstrate the relationship between variables
and environmental quality on the one hand and the untreated data on the other.
However, with the aid of suitable chemometric approaches, the relationship between
samples or variables can be investigated. Classical and robust principal component
analysis can provide a visual aid for identifying the water environment in DYB,
and then extracting specific information about relationships between variables and
spatial variation trends in water quality.

1. Introduction

Coastal waters are very vulnerable to pollution caused by wastewater,
runoff, effluents, land reclamation, recreation and aquaculture, as well
as atmospheric deposition and climate change (Bowen & Depledge 2006,
Kuppusamy & Giridhar 2006). To prevent/monitor coastal water pollution,
it is imperative to have reliable information on the quality of water for
effective management. The measurement of hydrochemistry variables in
the marine environment promotes a better understanding of the aquatic
environment. These variables produce large sets of data which are often
difficult to interpret (Vega et al. 1998, Simeonov et al. 2003, Singh et al.
2004, Shrestha & Kazama 2007). Data interpretation of multidimensional
measurements can be approached by the application of chemometric
methods such as principal component analysis (PCA) (Simeonov et al.
2003, Stanimirova et al. 2003, Wang et al. 2006, Chau & Muttil 2007,
Suikkanen et al. 2007, Wu & Wang 2007, Zhou et al. 2007). PCA is
a powerful tool in chemometrics and environmetrics for compressing data
and extracting information. It can reduce the dimensionality of a data set
consisting of a large number of interrelated variables, while retaining as
much of the variability present in a data set as possible. This reduction
is achieved by transforming the data set into a new set of variables, the
principal components (PCs), which are orthogonal (non-correlated) and
arranged in decreasing order of importance. However, it is well known that
PCA, like any other multivariate statistical method, is sensitive to outliers,
missing data, and poor linear correlation between variables due to their poor
distribution. As a result, data transformations have a large impact on PCA.
In this regard one of the most powerful approaches to improve PCA appears
to be robust principal component analysis (RPCA), which diminishes the
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influence of outliers (Stanimirova et al. 2004, Croux & Ruiz-Gazen 2005,
Gong et al. 2005).

In the present study, a robust principal component analysis approach
was applied to coastal water quality data in order to acquire a better
understanding of the role of water quality as a pollution indicator, and
to identify the contribution of natural and anthropogenic factors to water
quality variations in temporal and spatial patterns. Additionally, the
ecological situation of the coastal regions could be estimated more reliably.

2. Material and methods

2.1. Study area

Daya Bay lies on the southern coast of China (lat. 22.31′12′′–22.50′00′′N,
long. 114.29′42′′–114.49′42′′E), and is door-shaped. There are two towns
(Dapeng town and Nanao) in the western coastal area. The northern and
eastern coastal areas belong to Huizhou, Guangdong Province. There are
five towns on the bay: Xiachong, Aotou, Nianshan, Xunliao and Gangkou.
In recent years, the rapid economic development and anthropogenic activi-
ties in Shenzhen and Huizhou have had a great influence on the environment
of this bay. For example, two nuclear power plants have come into operation
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Figure 1. Monitoring stations in Daya Bay (Wang et al. 2006, 2008)
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(Wang et al. 2006), and the marine aquaculture industry has increased
in importance. The strong north-east monsoon prevails from October to
April, while the south-east Asian monsoons blowing in from the south-
west predominate from May to September (Wang et al. 2008). In order
to evaluate the anthropogenic and natural effects in this bay, the survey
stations were located as follows.

A total of 12 monitoring stations are located in DYB (Figure 1) (Wang
et al. 2006, 2008). Stations 1, 2, 6, 7, 9, 10, 11 and 12 are in the areas
between the mouth and the top of the bay for evaluating the effect of the
South China Sea and anthropogenic influence. Stations 3 and 8 are in the
aquaculture area for assessing the influence of fish-farming. Stations 4 and
5 are in the outfall and effluent areas of the Lingao Nuclear Power Plant
(LNPP) and the Daya Bay Nuclear Power Plant (DNPP) (Wang et al.
2006).

2.2. Analytical methods

Water samples were taken at the surface and from the bottom layers
of all stations in both the dry season (January and April) and the wet
season (August and November) in 2003. The determinations of pH, water
temperature and salinity were performed in situ using the water quality
Monitoring System. The other analyses were performed within 48 h after
sampling. The analytical parameters were determined in triplicate with
reference to current official methods (‘The specialties for oceanography
survey’ GB12763-91, China). The water quality parameters, their units
and analytical methods are summarized in Table 1.

2.3. Data treatment

No thermal stratification occurred in DYB, and little difference in
hydrographic parameters was observed between surface and bottom waters.
Therefore, the averaged data obtained from surface and bottom waters were
used in this study.

Standardized skewness and standardized kurtosis were determined to
see whether a sample came from a normal distribution. Values of these
statistics outside the range of −2 to +2 indicate significant departures from
normality. Statistical analysis of the data showed that all variables in the
original dataset, except pH, are normally distributed. The basic statistics
of the data set on water quality are summarized in Table 2.

Since classical PCA is strongly affected by outliers, it is not a robust
approach in chemometrics. At the same time, a situation with more
variables than observations (n< p) is frequently encountered in practical
applications: classical PCA might fail if n< p. In this study, robust PCA,
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Table 1. Physical-chemical and biological parameters determined and analytical methods used (Wang et al. 2006, 2008)

Parameters Abbreviation Units Instrument Analytical method

temperature T ◦C A Quanta�
salinity S PSU Water Quality
pH pH Monitoring

System (Hydrolab
Corporation, USA)

dissolved oxygen DO mg dm−3 Winkler titration

chemical oxygen COD mg dm−3 Potassium dichromate
demand oxidation

5-day biochemical BOD5 mg dm−3 5-day incubation, 20
oxygen demand

nitrite NO2-N µmol dm−3 A SKALAR auto- The Griesse-Ilosvay method
nitrate NO3-N µmol dm−3 analyzer (Skalar Cadmium-copper reduction
silicate SiO3-Si µmol dm−3 Analytical B.V. Silicone-molybdenum blue

SanPlus, the
Netherlands)

ammonia NH4-N µmol dm−3 spectrophotometer Indophenol blue

phosphate PO4-P µmol dm−3 spectrophotometer Molybdenum-antimony-ascorbic
acid

chlorophyll a Chl a mg dm−3 10-AU Spectrophotometry
Fluorometry
(Turner Designs,
USA)

total phosphate TP µmol dm−3 spectrophotometer Potassium peroxodisulfate
oxidation colorimetry
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Table 2. Descriptive statistics of water quality parameters in Daya Bay

Parameters Mean Maximum Minimum Stand. dev. Skewness Kurtosis

temperature 23.68 25.40 22.81 0.67 1.34 1.88
pH 8.09 8.14 7.89 0.06 −2.66 5.91
salinity 32.81 33.46 31.75 0.43 −1.02 1.44
DO 7.31 8.08 7.01 0.33 1.09 0.39
BOD5 1.43 1.94 0.99 0.31 0.00 −1.14

COD 0.88 1.30 0.52 0.26 −0.22 −1.16

Chl a 3.10 5.86 1.41 1.45 0.60 −0.69

NO3-N 3.40 4.72 2.78 0.56 0.94 0.54
NO2-N 0.26 0.43 0.14 0.10 0.24 −1.29

NH4-N 2.55 3.58 1.95 0.47 0.87 0.24
TP 0.84 1.06 0.63 0.11 0.24 0.35
PO4-P 0.10 0.15 0.05 0.03 0.37 −1.07

SiO3-Si 22.93 30.64 19.62 3.17 1.29 0.92

denoted by RPCA, is investigated. RPCA is still effective even if there are
a few anomalous observations and n< p (Croux & Ruiz-Gazen 2005, Gong
et al. 2005).

In this work, PCA and RPCA are applied to the matrix SA (the
48(12stations× 4seasons)× 13(variable) sample matrix) to obtain the load-
ing matrix Vpca and score matrix Tpca for PCA, and the loading matrix
Vrpca and score matrix Trpca for RPCA. In classical PCA and RPCA, we
used the annual mean matrix D12×13(12stations × 13variables) to evaluate the
spatial pattern of water quality.

In this present study, cluster analysis, classical PCA and RPCA were
employed on our dataset to identify the factors influencing the spatial
distribution of water quality.

Data were auto-scaled to avoid misclassification due to wide differences
in data dimensionality. The data were normalized with a mean and variance
of zero and one, respectively. All the procedures were performed using
MATLAB6.5 (Mathworks Inc., USA).

3. Results

3.1. Spatial characteristics for environmental factors

The horizontal distributions of nutrient concentrations in the water
column are shown in Figure 2. The spatial distribution of the NO3-N
concentration shows that it increases from the eastern to the western part
of DYB (Figure 2a). The spatial distribution of the NH4-N concentration
is similar to that of the NO3-N concentration (Figure 2b).
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Figure 2. Spatial distributions of NO3-N and NH4-N

The PO4-P concentration shows spatial variations, increasing from the
northern region to the mouth of the bay, and again from the eastern to
the western part of DYB (Figure 3a). The SiO3-Si concentration displays
spatial variation, decreasing from the northern region to the mouth of the
bay (Figure 3b).
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Figure 3. Spatial distributions of PO4-P and SiO3-Si

The horizontal distribution of COD concentration in the water column is
shown in Figure 4a. This shows that the COD concentration increases from
the eastern to the western part of the bay and from the mouth of the bay
to its northern region. The horizontal distribution of BOD5 concentration
is similar to that of the COD concentration (Figure 4b).
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Figure 4. Spatial distributions of COD and BOD5

3.2. Cluster analysis (CA)

The sampling stations were classified by the use of cluster analysis (the
Euclidean distance as a similarity measure and Ward’s method of linkage).
The cophenetic correlation coefficient is 0.60. Cluster analysis yielded
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a dendrogram (Figure 5) in which all 12 sampling stations on the bay were
grouped into two significant clusters. The clustering procedure generated
two groups of stations in a robust way, as the stations in these groups had
similar natural backgrounds and were probably affected by similar sources.
Cluster A (S1, S2, S4∼ S7, S9 and S12) and cluster B (S3, S8, S10 and S11)
respectively correspond to regions of relatively low and high pollution. The
stations in cluster A are located in the central, eastern and southern parts
of DYB. The stations in cluster B are located in the western and northern
coastal areas of DYB. S3 and S8 lie in the cage culture areas of Dapeng
Cove and the north-western part near Aotou harbor, respectively. S10 is
close to Xiachong and the shelf culture area in Xiaojing Wan. S11 was
primarily impacted by FanHe (industrial wastewater, agricultural runoff,
municipal sewage and aquaculture). A spatial view of the two areas defined
in DYB by the cluster analysis, corresponding to clusters A and B, is shown
in Figure 6.

cluster A

cluster B

22 48'o

22 45'o

22 42'o

22 39'o

22 36'o

22 33'o

22 30'o

22 27'o

la
ti

tu
d
e

N

22 51'o

22 54'o

114 30'o 114 36'o 114 42'o 114 48'o

longitude E

114 24'o 114 54'o

Figure 6. Map of the resulting zones from cluster analysis in Daya Bay in 2003
(Wang et al. 2006, 2008)
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3.3. Classical PCA and RPCA

Bartlett’s sphericity test carried out on the correlation matrix of
variables show the calculated value χ2 = 625.01, which is greater than
the critical value χ2 = 124.34 (α = 0.05 and 78 degrees of freedom),
thus indicating that the variables are not orthogonal but correlated; this
therefore allows the data variability to be explained with a smaller number
of variables than by principal component analysis. The loadings of the four
retained PCs with classical PCA are shown in Table 3. PC1 (25.53% of the
variance) is due mainly to T, S and NO3-N. PC2 (21.64% of the variance) is
characterized by DO and SiO3-Si. PC3 explains 15.91% of the variance, due
mainly to NO2-N and NH4-N, and is named the ‘N-containing factor’. PC4
explains 10.50% of the variance; it is due mainly to parameters of organic
pollution (DO, BOD5 and COD) and reflects contributions from urban and
industrial wastewater drainage.

Table 3. Loadings of 13 physical-chemical parameters on the
the first four PCs in classical PCA

Parameters PC1 PC2 PC3 PC4

temperature 0.37 −0.34 0.18 −0.21

pH 0.26 0.15 −0.20 0.29

salinity −0.42 −0.16 −0.26 0.11

DO −0.12 0.47 −0.01 0.37

BOD5 0.31 −0.30 −0.18 0.47

COD 0.20 −0.34 −0.08 0.54

Chl a 0.34 0.31 0.23 0.11

NO3-N 0.46 −0.01 0.16 −0.27

NO2-N 0.20 −0.12 −0.54 −0.26

NH4-N 0.14 0.14 −0.47 −0.19

TP 0.20 0.29 0.27 0.10

PO4-P 0.15 0.26 −0.21 −0.11

SiO3-Si 0.14 0.35 −0.34 0.02

eigenvalue 3.3190 2.8133 2.0686 1.3649
variance (%) 25.53 21.64 15.91 10.50

cumulative (%) 25.53 47.17 63.08 73.58

Figure 7 shows the PC1–PC2 scores and loading projection plots with
classical PCA. The loadings of variables were zoomed in 1.8 times; it is
intuitively clear that the loading of some variable contributes more to
a station’s score. The first two scores of the stations show that the marine
aquaculture stations (S3 and S8) and the non-aquaculture stations (the
other stations) are widely separated. S3 and S8 are located in Dapeng



Using chemometrics to identify water quality in Daya Bay, China 227

7

9

1

6

4

3

-1.0 -0.5 0 0.5 1.0 1.5

1.0

0.5

0

-0.5

-1.0

PC1

P
C

2

Chlorophyll

SiO -Si3

TP

pH

PO4 -P

NH -N4

8

DO

salinity

COD temperature

BOD5

NO -N3

NO -N2

5

10

11

12

2

Figure 7. Loadings of variables and scores of twelve stations for the first two PCs,
respectively

Ao and Aotou Bay, respectively. They are associated mainly with pH,
chlorophyll and nutrients. The first chlorophyll loading contributed more
to the score of S3 than the other factors did. The annual mean chlorophyll
(5.86 µg dm−3) is the highest at S3. The second silicate loading contributed
more to the score of S8 than the other factors did. Annual mean silicate
(30.64 µmol dm−3) is higher at S8 than at the other stations. S5 is located
in the outfall of high temperature effluent from DNPS; the annual mean
temperature (25.40◦) is higher at this station than at the others. The
temperature loading is strongly positive and negative in the first and second
PCs, respectively. The fifth station is predominantly related to temperature.

RPCA of the entire data set (Table 4) evolved three PCs with eigenvalues
greater than one explaining about 76.78% of the total variance in the water-
quality data set. The first PC accounting for 24.43% of the total variance
was correlated (loading> 0.40) with NH4-N and SiO3-Si. The second PC
accounting for 19.06% of total variance was correlated with temperature,
DO and SiO3-Si. The third PC accounting for 13.65% of total variance was
correlated with BOD5, NO2-N and NH4-N. The fourth PC accounting for
11.23% of total variance was correlated with salinity and TP. The fifth PC
accounting for 8.41% of total variance was correlated with COD and PO4-P.

The matrix of scores provides information about the distribution of
patterns or sources of contamination among samples. The matrix of loadings
defines the contribution of the original variables to each one of these
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Table 4. Loadings of 13 physical-chemical parameters on the first four
PCs in RPCA

Parameters PC1 PC2 PC3 PC4 PC5

temperature −0.11 −0.47 −0.25 0.14 −0.36

pH −0.16 0.12 −0.08 0.27 −0.11

salinity 0.22 0.15 0.03 0.46 0.10
DO 0.03 0.48 0.18 −0.11 0.07
BOD5 −0.28 −0.10 −0.46 0.31 0.28
COD −0.13 −0.13 −0.28 0.01 0.51
Chl a −0.27 0.23 −0.32 −0.01 −0.34

NO3-N −0.30 −0.31 0.03 −0.25 −0.03

NO2-N −0.37 −0.29 0.45 0.30 0.16
NH4-N −0.40 −0.01 0.53 0.04 0.02
TP −0.37 0.20 −0.16 −0.49 0.36
PO4-P −0.19 −0.03 −0.01 −0.30 −0.45

SiO3-Si −0.43 0.46 −0.06 0.32 −0.18

eigenvalue 3.0515 2.3807 1.7057 1.4028 1.0507
variance (%) 24.43 19.06 13.65 11.23 8.41
cumulative (%) 24.43 43.48 57.14 68.37 76.78
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contamination patterns or sources. The loadings of variables were zoomed in
5.0 times, which shows clearly that the loading of some variables contribute
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more to a station’s score (Figure 8). The data are distributed in a limited
region of space spanned by the two well-defined PC axes. The scores of
stations S3, S8, S10 and S11 have negative and positive values in PC1 and
PC2, respectively. These stations are located in the west and north of DYB.
The scores of the other stations (S1, S2, S4-S7, S9 and S12) have negative
values in PC2; these stations are located in the south and east of DYB.

4. Discussion

The results of CA, classical PCA and RPCA show that two clusters
can describe marine aquaculture and other human activities taking place in
this area (S3, S8, S10 and S11) and the non-aquaculture area (Figure 5).
Therefore, it is clear that the scores of the stations are in relation to the
importance of the variables.

In classical PCA, Chl a had higher positive loadings in PC2 than PC1,
so stations loaded with a higher concentration of Chl a are distributed in the
right upper quadrant. The loading of Chl amakes an important contribution
to the scores of S3, S8 in PC1 and PC2. The scores of S10 and S11 are due
mainly to nutrients and Chl a (see Figure 7). Similarly, in RPCA, Chl a had
higher negative and positive loadings in PC1 and PC2, respectively, so the
stations loaded with a higher concentration of Chl a are distributed in the
left upper quadrant. The loading of Chl a makes an important contribution
to the scores of S3, S8, S10 and S11 in PC1 and PC2, respectively (Figure 8).

Nutrient loadings make an important contribution to the scores of
S3, S8, S10 and S11 in PC1. The scores of S10 and S11 are due
principally to nutrients and Chl a (see Figures 7 and 8). The clockwise
Euler Residual Current in spring, summer and autumn in DYB (Xu
1989) carries river-borne nutrients entering the west and north of the
bay through this area; meanwhile, tidal currents carry nutrients from the
South China Sea through the bay as well, which may be the reason for
the higher concentration of Chl a there (Qiu et al. 2005). The PO4-P
concentration is higher in cluster A than in cluster B (Figure 3a). Domestic
wastewaters, particularly those containing detergents, as well as industrial
effluents and fertilizer run-off contribute to elevated levels of phosphates in
the water column. Phosphate concentrations can indicate the presence of
predominantly anthropogenic pollutants (Iscen et al. 2008). The NH4-N
and NO3-N concentrations have similar spatial distributions that increase
from the south and east to the west and north of DYB (Figure 2): this is
due mainly to industrial effluents and sewage. The amount of NH4-N from
industrial wastewaters is 34 000 000 kg year−1, and the total nitrogen and
NH4-N contents in domestic pollution are 807 600 and 646 800 kg year−1

(Zheng et al. 1998) in DYB, respectively. In DYB, expanding aquaculture
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activities are aggravating eutrophication in some parts of the Bay, and the
phytoplankton biomass remains high in Dapeng Ao and Aotou Bay (Song
et al. 2004). The silicate loading has greatly contributed to S8, terrestrial
sources being among the main origins of silicate (Wang et al. 2004).
Nutrients play an important role in the scores of the marine aquaculture
area (S3 and S8). The scores of S10 and S11 are also due mainly to nutrients
and Chl a (see Figures 7 and 8).

The BOD5 and COD loadings make a strong contribution to the scores
of S3, S8, S10 and S11 in classical PCA and RPCA. COD and BOD5 are
the traditional methods of obtaining information on bulk organic matter
in water (Kotti et al. 2005), and both variables are considered important
indicators of water quality. Both COD and BOD5 concentrations have
similar spatial distributions in DYB. The most polluted sites are S3, S8, S10
and S11 (higher COD and BOD5 values). This was to be expected, since
marine aquaculture and other activities take place in these areas. COD and
BOD5 loadings in PC1 in both classical PCA and RPCA are closely related
to the scores of stations S3, S8, S10 and S11. This result suggests that
the water quality at these stations is dominated by anthropogenic variables
(COD, BOD5). The concentrations of parameters related to anthropogenic
pollution like BOD5 and COD are higher in the west and north of DYB
than in its southern and eastern parts (Figure 4). This result indicates that
the contamination is derived mainly from municipal wastewater and fish-
farming.

BOD5 may also measure oxygen consumption by reduced forms of
nitrogen (e.g., nitrite) (Kotti et al. 2005). Accordingly, in the nitrification
process, NO2-N is an unstable intermediary which tends to convert to
NO3-N. Nitrates and nitrites are considered jointly due to their conversion
from one form to the other in the environment (Iscen et al. 2008). As high
NO3-N, NH4-N and NO2-N levels are associated with human activities, the
water quality in the western and northern parts of DYB is strongly related
to them.

The result of CA offers a reliable classification of water quality in the
whole region and will make it possible to design a future spatial sampling
strategy in an optimal manner. This reduces the number of sampling sites
in the monitoring network and the cost of the risk assessment procedure
(Simeonov et al. 2003, Singh et al. 2004). However, classical PCA and RPCA
can extract specific information about relationships between variables and
spatial variation trends in water quality. In comparison with classical PCA,
the clustering seen from the PC1–PC2 score projection graphs with RPCA
is better than that with classic PCA.
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5. Conclusions

The result of RPCA is in good agreement with the CA results. CA
yields good results as a first exploratory method to evaluate spatial
differences, but it fails to show up the details of these differences (Singh
et al. 2004). Classical PCA and RPCA can evaluate the incidence of
each group in the overall change in water quality and support specific
information on spatial differences in water quality. Water quality in DYB
was divided into two groups by robust principal component analysis: S3,
S8, S10 and S11 belong to cluster A, which lie in Dapeng Cove, Aotou
Harbor and the north-eastern parts of DYB, where water quality is related
mainly to anthropogenic activities. The other stations belong to cluster B,
which lie in the southern, central and eastern parts of DYB, where the
quality is related largely to water exchange from the South China Sea.
Robust principal component analysis as an important tool for information
extraction presents a novel approach for understanding a complex data
matrix, even though the situation with more variables than observations
(n<p) is frequently encountered in practical applications. Classical PCA
and RPCA can extract specific information about relationships between
variables and spatial variation trends in water quality.
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Iscen C. F., Emiroglu Ö., Ilhan S., Arslan N., Yilmaz V., Ahiska S., 2008,
Application of multivariate statistical techniques in the assessment of surface
water quality in Uluabat Lake, Turkey, Environ. Monit. Assess., 144 (1–3),
269–276.

Kotti M.E., Vlessidis A.G., Thanasoulias N. C., Evmiridis N. P., 2005, Assessment
of river water quality in Northwestern Greece, Water Resour. Manag., 19 (1),
77–94.

Kuppusamy M.R., Giridhar V. V., 2006, Factor analysis of water quality
characteristics including trace metal speciation in the coastal environmental
system of Chennai Ennore, Environ. Int., 32 (2), 174–179.



232 M.-L. Wu, Y.-S. Wang, C.-C. Sun, H. Wang, Z.-P. Lou, J.-D. Dong

Qiu Y.W., Wang Z.D., Zhu L. S., 2005, Variation trend of nutrient and chlorophyll
contents and their effects on ecological environment in Daya Bay, J. Oceanogr.-
Taiwan Strait, 24 (2), 131–139, (in Chinese).

Shrestha S., Kazama F., 2007, Assessment of surface water quality using
multivariate statistical techniques: A case study of the Fuji river basin, Japan,
Environ. Modell. Softw., 22 (4), 464–475.

Simeonov V., Stratis J. A., Samara C., Zachariadis G., Voutsa D., Anthemidis A.,
Sofoniou M., Kouimtzis Th., 2003, Assessment of the surface water quality in
Northern Greece, Water Res., 37 (17), 4119–4124.

Simeonova P., Simeonov V., Andreev G., 2003, Water quality study of the Struma
river basin, Bulgaria (1989–1998), Centr. Eur. J. Chem., 1 (2), 121–136.

Singh K.P., Malik A., Mohan D., Sinha S., 2004, Multivariate statistical techniques
for the evaluation of spatial and temporal variations in water quality of Gomti
River (India) – a case study, Water Res., 38 (18), 3980–3992.

Song X.Y., Huang L.M., Zhang J. L., Huang X.P., Zhang J. B., Yin J.Q., 2004,
Variation of phytoplankton biomass and primary production in Daya Bay
during spring and summer, Mar. Pollut. Bull., 49 (11–12), 1036–1044.

Stanimirova I., Walczak B., Massart D. L., Simeonov V., 2004, A comparison
between two robust PCA algorithms, Chemometr. Intell. Lab., 71 (1), 83–95.

Suikkanen S., Laamanen M., Huttunen M., 2007, Long-term changes in summer
phytoplankton communities of the open northern Baltic Sea, Estuar. Coast.
Shelf Sci., 71 (3–4), 580–592.

Vega M., Pardo R., Barrado E., Deban L., 1998, Assessment of seasonal and
polluting effects on the quality of river water by exploratory data analysis,
Water Res., 32 (12), 3581–3592.

Wang Y. S., Lou Z. P., Sun C.C., Sun S., 2008, Ecological environment changes in
Daya Bay, China, from 1982 to 2004, Mar. Pollut. Bull., 56 (11), 1871–1879.

Wang Y. S., Lou Z.P., Sun C.C., Wu M.L., Han S.H., 2006,Multivariate statistical
analysis of water quality and phytoplankton characteristics in Daya Bay,
China, from 1999 to 2002, Oceanologia, 48 (2), 193–211.

Wang C.H., Qi Y. Z., Li J.T., Xu N., Chen J.F., 2004, Analysis and evaluation
of trophic status in aquaculture areas of Daya Bay, Mar. Environ. Sci., 23 (2),
25–28, (in Chinese).

Wu M.L., Wang Y. S., 2007, Using chemometrics to evaluate anthropogenic effects
in Daya Bay, China, Estuar. Coast. Shelf Sci., 72 (4), 732–742.

Xu G. Z., 1989, Environments and resources of Daya Bay, Anhui Sci. Publ., HeFei,
China, 1–28, (in Chinese).

Zheng Q.H., He Y.Q., Zhang G.X., 1998, Impact on the changes of chemical
composition of seawater from waste water discharged in Daya Bay, [in:] Annual
research reports: Marine Biology research station at Daya Bay (II), J. Pen
& Z. Wang (eds.), Sci. Publ., Beijing, China, 102–112, (in Chinese).

Zhou F., Guo H. C., Hao Z. J., 2007, Spatial distribution of heavy metals in Hong
Kong’s marine sediments and their human impacts: A GIS-based chemometric
approach, Mar. Pollut. Bull., 54 (9), 1372–1384.


