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Abstract

A substantial part of the energy of wake waves from high-speed ships sailing in shal-
low water is concentrated in nonlinear components which at times have a solitonic
nature. Recent results of investigations into solitonic wave interactions within the
framework of the Kadomtsev-Petviashvili equation and their implications for rogue
wave theory are reviewed. A surface elevation four times as high as the counterparts
occurs if the properties of the interacting waves are specifically balanced. The slope
of the water surface may increase eightfold. The resulting structure may persist
for a long time. Nonlinear wake components may exert a considerable influence on
the marine ecosystem in coastal areas.

1. Introduction
Concerns related to ship traffic are usually associated with possible

accidents (ship collisions or grounding, technical and navigation problems
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caused by severe weather or human error, etc.) that may lead to loss of life
or property. These concerns are being effectively managed by international
shipping and harbour communities. The basic assumption is that the risks
of water surface transport are localised within a small area around the ship.

The continuing introduction of fast ship services during recent decades
has created new, major worries. Apart from the massive increase in exhaust
emissions (capable of creating substantial changes in the atmosphere – see
e.g. Durkee et al. 2000) and the great upsurge in external noise, the most
important issue is the wake generated by large, high-speed ships (PIANC
2003, Wood 2000). These by-products of fast ship traffic are not located in
small areas any more; they may travel much faster than the ships themselves
(ship-generated noise) or may become a part of global problems (exhaust
emissions).

The wakes excited by high-powered ships sailing in shallow and moder-
ately deep waters (up to 100 m) exhibit several specific features. Frequently
consisting of non-dispersive, highly nonlinear shallow water waves, and often
resembling ensembles of Korteweg-de Vries (KdV) solitons (Soomere et al.
2005), the evolution and interaction of these wakes differ fundamentally
from the behaviour of linear waves. These large waves can have a significant
impact on the safety of people, property and craft (Parnell & Kofoed-Hansen
2001, PIANC 2003).

In this paper, an attempt is made to describe the major aspects of the
potential joint influence of this source of solitonic waves and the specific
features of their nonlinear interactions. The description of the classical
Kelvin ship wave pattern and its changes with increasing ship speeds are
sketched first. This is followed by an overview of generic implications
of wakes from intensive ship traffic. The central part of the overview is
a description of recent developments in the analysis of the specific features
of the interactions of (possibly ship-induced) long-crested solitonic waves
(interpreted as KdV solitons) within the framework of the Kadomtsev-
Petviashvili (KP) equation. In this context, wave dissipation and breaking,
and wave-bottom interactions, are ignored. Finally, potential modifications
of the wave shape and applications of the results in realistic shallow-water
conditions are discussed.

2. Linear wakes

The first description of the stationary wave pattern excited by a moving
point source in terms of two sets of waves that move forwards and away
from the disturbance (diverging waves), and one set of waves that move in
the direction of the disturbance (transversal waves) was given by Froude
(1877). This pattern is called the Kelvin wave system (Kelvin wake)
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after W. Thomson (1887), Lord Kelvin, who constructed the corresponding
theory for deep water. The work was expanded by Havelock (from 1908)
to resolve discontinuities in the Kelvin model and to include the effects of
water depth.

A quick derivation of the Kelvin wave pattern can be found in Lamb
(1997, § 256) or Lighthill (1978, § 3.10). The analysis relies on the dispersion
relation and needs to apply only three basic ideas: (i) that the wave system
is stationary, (ii) that the constant phase curves are perpendicular to the
wave vector, and (iii) that the phase velocity cf of stationary waves is equal
to the projection of the ship’s velocity V in the wave propagation direction
(Yih & Zhu 1989a,b).

Conditions (i) and (iii) simply mean that the pattern of wave crests
created by a steadily moving ship can only be stationary if the wave
component travelling at an angle θ with respect to the sailing line has the
celerity cf = V cos θ. The celerity of linear surface waves cf ≤ cg, where cg is
the group velocity; hence, the energy of a steady wave system can exist only
within a triangular area called the Kelvin wedge. The half-angle α of the
wedge satisfies the condition sinα= 1/

(
2cf cg−1 − 1

)
, and is α= arcsin(1/3)

in deep water where cf = 2cg. The basic features of the steady wave pattern
in deep water do not therefore depend on the sailing speed.

If the ship sails in water of finite depth H, the ratio cf/cg = 2/[1 + 2kH
sinh−1(2kH)], where k is the wave number (Sorensen 1973). Yet the angle
α only depends on the depth Froude number Fh = V/

√
gH, that is, on the

ratio of the ship’s speed and the maximum celerity of surface waves for this
depth.

Shallow-water effects become important when the wavelength is approx-
imately twice as long as the water depth, i.e., when kH < π. The relevant
depth Froude number for diverging waves at the edge of the Kelvin wedge is
F̃hd ≈ 0.687. For somewhat longer transverse waves propagating along the
sailing line this threshold is F̃ht ≈ 0.56 (Sorensen 1973). Therefore, at Fh

above 0.55–0.7 the ship-generated wave system should respond to changes
in the water depth.

If the ship’s speed V =
√
gH , the angle α reaches the maximum value

α= 90◦. Frequently, it is claimed (perhaps because of a misinterpretation of
the results presented by Havelock 1908; Sorensen 1973) that the transverse
and the diverging waves form a single large wave with its crest normal to the
sailing line, and that this wave travels at the same speed as the disturbance
at Fh → 1. Such a description is conceptually imprecise, because what
exactly happens at these speeds cannot be described by the linear theory.
However, it is true that wave heights do increase considerably at Fh → 1
and wave periods increase gradually as the ship’s speed does so.
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The threshold Fh = 1 serves as a natural basis for the classification of
navigational speeds. Operating at speeds of Fh < 1 is defined as subcritical,
at Fh > 1 as supercritical and at Fh = 1 as critical. There is a relatively wide
transcritical speed range 0.84 < Fh < 1.15 in realistic conditions, where no
clear distinction between sub- and supercritical regimes is possible (Hüsig
et al. 2000).

3. Contribution of waves from high-speed ships to wave
activity

The generic importance of the contribution of ship traffic to the local
hydrodynamic activity in rivers, inland channels and narrow straits was
recognised a long time ago. Intuitively, it is clear that heavy ship traffic
has a great damaging potential in the neighbourhood of waterways that are
sheltered from large wind waves (such as wetlands and low-energy coasts;
see e.g. Schoellhamer 1996, Bourne 2000). The influence of ship wakes is
presumed to be negligible in coastal areas that are open seawards or exposed
to high tides, and where natural waves are frequently much higher than the
wakes (Lindholm et al. 2001). Yet wake wash may make a major dynamical
contribution also in certain parts of open sea coasts that are exposed to
significant natural hydrodynamic loads (Soomere 2005b).

As a model case, the impact of wakes from high-speed ferries on the
coastal environment in non-tidal seas is analysed in terms of wave energy
and power, and the properties of the largest waves in Tallinn Bay, Baltic Sea
(Soomere et al. 2003a,b). This area can have very rough wave conditions
(Soomere 2005a). Certain parts of its coasts are exposed to significant wave
loads and are already subject to intense beach erosion. However, ship traffic
is so intense that ship-generated waves form at least c. 5–8% of the total
wave energy and c. 18–35% of the wave energy flux (wave power) in the
coastal areas of Tallinn Bay (Soomere et al. 2003a,b, Soomere & Rannat
2003). The reason for such a large contribution of ship waves in the total
wave activity is the combination of (i) specific features of the existing
hydrodynamic loads (restricted to a particular direction or to a certain
frequency interval) with (ii) particularly high anthropogenic wave loads that
are qualitatively different from the natural wave loads (Soomere 2005b).

4. Environmental implications

The relatively large contribution of ship waves to the wave power budget
in the Tallinn Bay area indicates that the periods of waves from high-speed
ships are frequently much larger than the dominating periods of wind waves
in this area. The leading wake waves typically have a height of about
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1 m and a period of 10–15 s. Such waves seldom occur under natural
conditions in many regions of semi-enclosed seas (Soomere 2005a). They
were probably first characterised as ‘an unknown phenomenon’ in the report
of the Danish Maritime Authority (1997), which was based on the relevant
studies by Kofoed-Hansen & Kirkegaard (1996). Such waves cause unusually
high hydrodynamic loads in the deeper part of the nearshore, not only
because of their length and height, but also as a result of their nonlinear
properties (Soomere et al. 2005). Ship wakes at times contain specific
types of disturbances, such as monochromatic packets of relatively short
waves (Brown et al. 1989), depression areas penetrating into adjacent basins
(Forsman 2001), or a supercritical bore (Gourlay 2001).

Fast ferry traffic may thus form a qualitatively new forcing component
with a significant impact on the local ecosystem in certain open sea areas.
In Tallinn Bay, the contribution of ship waves to the wave climate is literally
comparable with what would happen if the open ocean swell from the North
Atlantic were to reach the Gulf of Finland. Ship waves induced at trans- and
supercritical speeds may result in violent energy concentrations not only in
the vicinity of ship lanes but also in remote sea areas. It does not seem to
be unusual any more that holidaymakers are forced to ‘flee for their lives
when enormous waves erupted from a millpond-smooth sea’, or that waves
(which caused a fatal accident near Harwich, a port on England’s east coast,
in July 1999) look like ‘the white cliffs of Dover’ (Hamer 1999).

This new component of the local ecosystem is a cause for serious concern.
An extensive reaction of the fine sediments in the deeper part of the
nearshore is conceivable. Ship waves may be responsible for the acceleration
of coastal and sea-bottom erosion (Schoellhamer 1996), and may even trigger
considerable changes in the existing balance of coastal processes (Soomere
& Kask 2003). They also may seriously damage the biological environment.
Suspension and re-sedimentation of finer sediments may considerably worsen
fish spawning conditions and, under some conditions, may lead to the
resuspension of contaminated sediments (Francisco et al. 1999). The
accompanying reduced water transparency (Erm & Soomere 2004) may have
a suppressing feedback on the bottom vegetation.

5. Solitonic ship waves

The most important feature of the wake of relatively fast ships in
restricted waters is that solitary waves can be generated ahead of the ship.
John Scott Russell first documented this phenomenon as he watched in
1834 a canal boat pulled by horses stopping suddenly (see his description
reprinted, e.g., by Drazin & Johnson 1989). In a more complex form it
has been observed in towing tanks where a ship model can radiate waves
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that move upstream faster than the ship. Helm (1940) was probably the
first to report that many solitons may be generated subsequently. At
certain speeds the influence of the ship model extended to 4–5 lengths
of the model upstream, whereas up to 7 wave crests were detectable.
This is a highly intriguing phenomenon, because it is very unusual that
‘a forcing disturbance moving steadily . . . in shallow water can generate,
continuously and periodically, a succession of solitary waves, propagating
ahead of the disturbance’ (Wu 1987, my italics). These waves have been
named ‘precursor solitons’.

This phenomenon may occur in other areas of research and engineering
(Wu 1987). It is a generic mechanism of excitation of disturbances in situ-
ations where the nonlinear and dispersive effects are specifically balanced,
and becomes effective when the group velocity of long waves radiating from
the forcing area is close to the velocity of the disturbance. The local waves
therefore obtain energy from the source during a relatively long time. In
meteorological applications, examples of high waves generated by moving
pressure disturbances when the disturbance speed is approximately the
critical speed were reported a long time ago (see e.g. Dysthe & Harbitz
1987 and the references therein). The resulting waves sometimes resemble
tsunami (Dean & Dalrymple 2004) and are even called ‘meteorological
tsunami’ (Rabinovich & Monserrat 1998).

In confined waters disturbances resembling KdV solitons frequently
occur far ahead of a ship (Neuman et al. 2001). The ship’s speed is the
decisive factor in forming these waves, because for speeds much less than
the critical one the linear waves will effectively carry away the wave energy.
A ship may generate a sequence of solitary waves starting already from
Fh ≥ 0.2, and such waves are found in numerical computations for Fh ≥ 0.4,
(Ertekin et al. 1984, 1986). They are the largest for transcritical speeds,
may be generated also in open sea areas (Li & Sclavounos 2002), and are
frequently accompanied by a sudden dropdown of the water surface near the
vessel (Forsman 2001, Li & Sclavounos 2002). When breaking, they may
form a bore ahead of a ship sailing in a narrow channel within a certain
range of Froude numbers (Gourlay 2001).

There exists an opinion that precursor solitons have been responsible
for some disasters (Hamer 1999, Li & Sclavounos 2002). A more probable
source of high solitonic waves are the long components of diverging waves
that become cnoidal (Parnell & Kofoed-Hansen 2001) or take on the shape
of KdV solitons (Soomere et al. 2005) in shallow areas.

The theory of the mechanism of precursor soliton generation was given
by Akylas (1984) and Cole (1985) for the basically equivalent environments
of a moving disturbance and for a flow past a bump in a channel with
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a horizontal bottom. In these models the dissipation and breaking effects
have been omitted. Let p = p(x + V t) and b = b(x + V t) respectively
represent the moving ship (interpreted as a surface pressure patch) and
the topography. Assume that the velocity V is nearly critical, so that
Fh = 1 + εδ, where ε = (H/λ)2 << 1 for long waves and δ = O(1). In
the coordinate system moving with the pressure patch or topography, the
evolution of the water surface η̃ is, with accuracy O(ε2), described by the
following equation (Wu 1987):

1√
gH

η̃t +
[
(Fh − 1) − 3

2H
η̃

]
η̃x − H2

6
η̃xxx =

1
2
∂

∂x

(
p

ρg
+ b

)
. (1)

Eq. (1) is an example of a forced Korteweg-de Vries (fKdV) equation with
a singular forcing function for a point disturbance. For Fh = 1, p = b =
const, this equation is the classical homogeneous Korteweg-de Vries (KdV)
equation. This framework intrinsically contains only one spatial dimension.

The first two-dimensional numerical results showing the existence of
precursor solitons were probably presented by Wu & Wu (1982). They
calculated nonlinear long waves forced by a pressure patch moving with
a near-critical speed V ≈ √

gH in a two-dimensional tank with the use of
the generalised Boussinesq model of Wu (1981). A solitary wave emerges
ahead of the pressure disturbance and propagates upstream.

Numerical experiments based on the Green-Naghdi fluid sheet equation
also demonstrated that a series of upstream-propagating soliton-like distur-
bances appeared ahead of the ship at transcritical speeds (Fh = 0.9 − 1.2,
Ertekin et al. 1984, 1986). Lee et al. (1989) established that the fKdV
model and the generalised Boussinesq model give similar predictions of
this phenomenon and show a satisfactory agreement with experiments.
The agreement is especially reasonable when Fh ≈ 1 and the height of
the disturbance is small compared with the water depth. A comparison
between the fully nonlinear model and the two models above was carried
out by Casciola & Landrini (1996) with the use of a more accurate boundary
integral approach.

6. Interaction of solitonic wake components

It has been suggested by many authors that an appropriate nonlinear
mechanism is responsible for extreme waves. In this context, analysis of the
propagation and interactions of KdV solitons has intriguing applications
within the framework of abnormally high waves in shallow coastal areas as
well as in the general theory of rogue waves.

Nowadays, the mechanisms of interaction of unidirectional KdV solitons
are well understood. They do not create any drastic increase in wave
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amplitudes (Drazin & Johnson 1989). However, considerable amplitude
amplification may occur when KdV solitons propagating in slightly different
directions meet each other (Hammack et al. 1989, 1995). The ‘collision’
of two solitons is one of the few mechanisms able to create long-living,
extremely high wave humps in shallow water (Kharif & Pelinovsky 2003).

A suitable mathematical model for describing the interaction of nearly
unidirectional solitonic shallow water waves is the Kadomtsev-Petviashvili
(KP) equation that admits explicit multi-soliton solutions. Such interac-
tions may lead to spatially localised, extreme surface elevations that can be
up to four times as high as the incoming waves.

This mechanism has long been known as the Mach reflection (also called
the Mach stem; Miles 1977, Freeman 1980) of solitary waves from a wall.
It has only recently been proposed as an explanation of the freak wave
phenomenon (Peterson et al. 2003). It may become evident only (i) provided
long-crested shallow water waves can be associated with solitons and (ii)
provided the KP equation is a valid model for such waves. These conditions
are not common for storm waves in deep water; however, they are often
satisfied when two systems of swell approach a shallow area from different
directions. Groups of solitonic waves propagating at a small angle also
appear if wakes from two ships intersect in shallow water. Their interaction
may be responsible for the dangerous waves along shorelines mentioned in
Hamer (1999).

The nondimensional KP equation for surface gravity waves in shallow
water reads (Segur & Finkel 1985)

(ηt + 6ηηx + ηxxx)x + 3ηyy = 0. (2)

Here nondimensional variables (x,y, t, η) are related to physical variables
(x̃, ỹ, t̃, η̃) as follows: x =

√
ε

(
x̃− t̃

√
gH

)
/H, y = εỹ/H, t =

√
ε3gHt̃/H,

η = 3η̃/(2εH) + O(ε), ε = |η̃max|/H << 1 and, as above, the effects of
dissipation and breaking are omitted, and the water depth is constant.
The two-soliton solution to eq. (2) can be decomposed into a sum
η = s1 + s2 + s12 of incoming solitons s1,2 = A

1/2
12 k2

1,2Θ
−2 cosh (φ2,1x +

lnA1/2
12 ) and the residue s12 = 2Θ−2[(k1 − k2)2 + A12(k1 + k2)2]. Here

Θ = cosh 1
2(φ1 − φ−2) + cosh 1

2 (φ1 + φ2 + lnA12), φi = kix + liy + ωit,
κi = (ki, li), a12 = 1

2k
2
1,2, i = 1,2, are the wave vectors and amplitudes of the

incoming solitons, the ‘frequencies’ ωi satisfy the dispersion relation kiωi +
k4

i + 3l2i = 0 of the linearised KP equation, A12 = [λ2 − (k1 − k2)2]/[λ2 −
(k1 + k2)2] is the phase shift parameter and λ = l1k

−1
1 − l2k

−1
2 (Peterson

& van Groesen 2000).
The interaction may result in either the positive or the negative

phase shift (defined by the sign ∆12, where ∆12 = − lnA12) of the
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Fig. 1. Surface elevation in the vicinity of the interaction area, corresponding to
incoming solitons with equal amplitudes a1 = a2, l = −l1 = 1/3, kres =

√
1/3

corresponds to the resonant case, and k = 0.85kres (upper left panel), k = 0.95kres

(upper right), k = 0.99kres (lower left), k = 0.9999kres (lower right). The area
0 ≤ z ≤ 4a1, |x| ≤ 30, |y| ≤ 30 in normalised coordinates is shown on each panel

counterparts. The interaction pattern (Fig. 1) is always symmetric with
respect to a particular point called the interaction centre, and is stationary
in a properly moving coordinate frame. The phase shifts δ1,2 of the
counterparts (Fig. 2) only depend on the amplitudes of the incoming solitons
and the angle between their crests. The relations for the phase shifts
δ1,2 = lnA12/|κ1,2| and for the intersection angle 2 tan 1

2α12 = λ can be
simplified to one transcendental equation with respect to either of the
amplitudes of the interacting solitons (Peterson & van Groesen 2000)

δ1

√
2a1(1 + λ2/4) = ± ln

δ2
2λ

2 − 2(δ2 − δ1)2a2
1

δ2
2λ

2 − 2(δ2 + δ1)2a2
1

. (3)

This angle α12 and the magnitudes of the phase shifts δ1,2 can be
estimated, e.g., from aerial photos. If the sign of the phase shift is known, eq.
(3) uniquely defines the heights of the interacting solitons. The sensitivity of
this method and several simplifications of eq. (3) are discussed in Peterson
& van Groesen (2001).

For the negative phase shift case A12 > 1 (which is typical in interactions
of solitons with comparable amplitudes) an interaction pattern emerges,
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L12

x

( , )k l1 1

( , )k l2 2

y

a12

d1
d2

Fig. 2. Idealised patterns of crests of incoming solitons (bold lines), their position
in the absence of interaction (dashed lines) and the common crest (bold dashed
line) in the negative phase shift case

the height of which exceeds the sum of the amplitudes of the incoming
solitons (e.g. Miles 1977, Tsuji & Oikawa 2001). When two waves of
arbitrary amplitudes a1 and a2 meet, the maximum amplitude M of their
superposition can be written as M = m(a1 + a2), where the ‘nonlinear
amplification factor’ m may depend on both a1 and a2 and their intersection
angle. The maximum surface elevation for equal amplitude solitons is
amax = 4a1,2/

(
1 +A

−1/2
12

)
(Miles 1977, Soomere & Engelbrecht 2005a).

Thus, the nonlinear superposition of two equal amplitude solitons may lead
to a fourfold amplification of the surface elevation in the resonance case
A12 → ∞. In the highly idealised case of the interactions of five solitons,
the surface elevation may exceed the amplitude of the incoming solitons by
more than one order (Peterson 2001).

Extreme water level elevations occur if the solitons intersect at a physical
angle α̃12 = 2arctan

√
3η̃/h (Peterson et al. 2003). This angle is about 36◦

for waves with heights η̃ = 1.8 m (the maximum ship wave height mentioned
in Soomere & Rannat 2003) meeting each other in an area with a depth of
50 m, and about 70◦ for waves with heights η̃ = 0.8 m in a coastal zone with
a depth of 5 m.

For unequal amplitude solitons the maximum elevation amax for finite
A12 and the amplitude of the resonant soliton a∞ at A12 = ∞ are

amax = a12 + 2A1/2
12

a1 + a2(
A

1/2
12 + 1

)2 , a∞ =
(k1 + k2)2

2
. (4)

The expression for a∞ was probably first obtained for the exact resonance of
ion-acoustic solitons in a field-free plasma (Gabl & Lonngren 1984) directly
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from the resonance conditions, assuming that the resonant structure is
a KdV soliton. It was re-derived from the conditions for stationary points of
the explicit two-soliton solution of the KP equation in Duan et al. (2004).
A simple derivation of expressions (4) is given in Soomere (2004). The
amplification factor m = 1 + 2k1k2

(
k2
1 + k2

2

) ≈ 2 when the amplitudes of
the interacting solitons are close to each other, and is near to 1 when they
are fairly different.

The geometric features of the composite structure created by the
interactions of two solitons within the framework of the KP equation
have been analysed in Peterson et al. (2003), Soomere (2004), Soomere
& Engelbrecht (2005a), and Soomere & Engelbrecht (2006). The area
where a high hump potentially emerges may be associated with the area
where the interacting waves have a common crest (Fig. 2). Its length
L12 ∼ lnA12 (Peterson et al. 2003) and is therefore modest unless
A12 → ∞, that is, unless the interacting solitons are near-resonant. For
equal amplitude solitons, the extent of the area where the elevation in the
composite structure exceeds the sum of amplitudes of the counterparts may
considerably exceed the estimates based on the geometry of the wave crests
(Soomere & Engelbrecht 2005a); however, the length of this area is also
roughly proportional to lnA12.

A part of the analysis of the geometric features of the high wave humps
is generalised to the case of interacting solitons with unequal amplitudes in
Soomere (2004) and Soomere & Engelbrecht (2006). The spatial extent
of the high hump in interactions of solitons with considerably different
amplitudes is roughly as large as if the amplitudes were equal. Such
interaction mostly leads to bending of the crests of both the counterparts
(Fig. 3; cf Duan et al. 2004) and may be one of the reasons for hits by high
waves arriving from an unexpected direction.

The process of high wave hump formation is studied numerically in
Porubov et al. (2005). These authors simulate the collision of semi-infinite
structures within the framework of the KP equation. Transversal energy
flow along the crests of such a structure presumably takes place, and the
results are not directly comparable with the ones presented above. However,
a high wave hump, the height of which considerably exceeds the sum of
the heights of the counterparts, is formed quite fast in a certain interaction
region. Interaction of solitary waves with the crest localised in one half-plane
is studied numerically in Tsuji & Oikawa (2004) in terms of the modified
KP (mKP) equation, in which the quadratic term of the KP equation is
replaced by the cubic term 6η2ηx. The mKP equation admits both positive
and negative solitary wave solutions. The interaction of positive solitary
waves results either in structures containing a very high and narrow wave
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Fig. 3. Surface elevation in the vicinity of the interaction area, for k2 = 1/3
l = −l1 = 0.2, kres = 0.6 and k1 = 0.85kres (upper left panel), k1 = 0.95kres

(upper right), k1 =0.999kres (lower left), k1 =0.9999kres (lower right) in normalised
coordinates (x, y). The area | x |≤ 60, | y |≤ 90 is shown on each panel

hump or in transforming the incoming waves into a sequence of much
smaller waves.

7. Modification of the wave shape

A pronounced feature of freak waves is that they are particularly steep.
It has been claimed that the shape of actually measured freak waves cannot
be explained with the use of the existing wave physics, and ‘it is concluded
that new physics, not incorporated in standard approaches to offshore
engineering design, may have played an important role in the generation
of this [Draupner’s New Year 1995] freak wave’ (Walker et al. 2004).

Nonlinear interactions may form a part of this new physics in shallow
areas. Plots of two-soliton solutions (Haragus-Courcelle & Pego 2000,
Peterson & van Groesen 2000, Peterson et al. 2003) suggest that the
front of the near-resonant wave hump is very steep. This feature is also
recognisable in the experiments with the Mach reflection of supercritical
ship wakes (Chen et al. 2003), where the highest part of the wave hump is
narrower than the incoming solitons.

The maximum slope of the front of the two-soliton solution may
be eight times as large as the slope of the incoming solitons, giving
the relevant maximum ‘nonlinear slope amplification factor’ equal to 4
(Soomere & Engelbrecht 2005a). For unequal amplitude solitons, the slope
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amplification may be twice as great as the amplitude amplification (Soomere
& Engelbrecht 2005b). This result, although intriguing, is not totally
unexpected, because a new soliton is formed by the nonlinear interactions
(Miles 1977b, Freeman 1980, Soomere & Engelbrecht 2006). It is higher and
therefore narrower than the incoming solitons.

8. Discussion: soliton interactions and compact wakes in
realistic conditions

It is not clear whether the above-discussed features can be recognised in
isolated form in open sea conditions. There is, however, increasing evidence
that they may become evident under certain specific conditions.

The extraordinary steepness of the front of the near-resonant structure
makes a hit by such a structure exceptionally dangerous. The dimensional
profile of solitary waves is η̃ = a cosh−2(βx), where a is the amplitude of
the soliton and β ≈ 1

2

√
3a/h3 (Drazin & Johnson 1989). The steepness of

even quite high solitonic waves, although proportional to a3, is moderate
for deeper areas and they are far from breaking. For example, for the
depth h ≈ 70 m of the Draupner area, the maximum steepness of 3, 5 and
8 m high solitary waves is 0.006, 0.013 and 0.026, respectively (Soomere
& Engelbrecht 2006). Such waves are hardly distinguishable on the open
sea. However, the maximum steepness of an 18 m high solitary wave, which
may be formed through the interaction of two long and long-crested waves
with a height of about 5 m, is about 0.087. This is somewhat less than the
actual slope of the front of the Draupner wave.

Since a KdV soliton breaks when its height reaches about 80% of the
water depth, the breaking limit is not usually reached in deeper areas. Yet
the high wave hump may break when it propagates into an area where
the conditions for the existence of the two-soliton solution are not satisfied
(Peterson et al. 2003).

Breaking wave humps may occur in more shallow areas, where groups
of solitonic waves intersecting at a small angle may appear if wakes from
two ships meet each other. The crossing of solitonic ship waves with heights
of η̃ = 0.8 m and maximum slopes of 0.043 (which frequently occur in the
coastal zone of Tallinn Bay at a depth of 5 m; Soomere & Rannat 2003)
may produce extremely steep structures which have a height of over 3 m,
a maximum slope of about 0.34, and which are close to breaking.

The particularly high hump in the nonlinear interaction of KP solitons
has a considerable length only when the heights of the incoming waves,
their intersection angle and the water depth are specifically balanced.
Consequently, the fraction of sea surface occupied by extreme elevations
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is apparently small compared with the area of a wave storm or the area
covered by ship wakes.

There is an important difference between high waves potentially excited
by the described mechanism and those arising owing to the focusing of
transient and directionally spread waves. In the latter case a number of
waves with different frequencies and propagation directions are focused at
one point at a specific instant in time to produce a time-varying transient
wave group that normally does not propagate far from the focusing area
(Kharif & Pelinovsky 2003). A wave hump from nonlinear interaction within
the framework of the KP equation, theoretically, has an unlimited lifetime
and in favourable conditions may cross large sea areas. The potentially
long lifetime of nonlinear wave humps may greatly increase the probability
of being hit by such waves.

A generic feature of long, long-crested and high ship wakes is that
they may cause ship traffic to have a considerable remote impact owing to
their low decay rates and their exceptional compactness (Soomere 2005b).
This feature should be addressed in the analysis of the impact of harbours
and associated ship traffic in the neighbourhood of vulnerable areas. In
particular, it may be necessary to extend the definition of pollution (which
is commonly interpreted as the release of certain substances or noise into
the environment) towards including the release of energy in general into the
marine environment.
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