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Abstract

The paper deals with the conformal mapping of finite, plane, simply connected
domains, representing oceans, lakes, estuaries, bays, lagoons, and other natural
water bodies of this kind. As a rule, they are bounded by geometrically complex
shorelines. The partial differential problems investigated in Oceanology and posed
in such domains have turned out to be difficult to solve for at least three reasons.
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They follow on from the mathematical properties of the differential equations
governing such problems, from the just-mentioned geometrical complexity of
the domains of solution, and from the sensitivity of the solutions to boundary
conditions.

In view of the last reason the contours admitted as boundaries of the domains
of the solution ought to be as close to the real shorelines as possible. The
obviously inaccurate approximation of the shorelines by ‘staircases’, which appears
rather often (cf. Catewicz & Jankowski 1983, Lin & Chandler-Wilde 1996) as
a consequence of applying finite difference methods to the solution of the partial
differential problems, raises serious doubts from the point of view of Numerical
Fluid Mechanics.

It is recalled in the paper that such inaccuracies are not unavoidable: that
complicated plane domains can be transformed accurately by means of properly
applied conformal mapping onto regular, canonical domains – in particular, onto
discs or squares. Such a transformation is demonstrated on the rather difficult
example of the Vistula Lagoon. The transformation begins with the decomposition
of the domain into five plane subdomains, each one of which is eventually
transformed onto a disc. Every such result is arrived at quite independently of
the remaining subdomains, by means of a set of properly selected consecutive
mappings. Hence, the final canonical domain consists in this case of a system of
five discs which, however, within the framework of this differential problem, have to
be treated as interconnected. The interconnections involve images of four segments
of straight lines, separating the original subdomains.

The transformations and the resulting canonical domain presented in the paper
are intended to be applied to the solution of certain hydrodynamical problems
concerning the Vistula Lagoon, which will be published elsewhere.

1. Introduction

Many physical phenomena considered in Oceanology can be described
in the language of mathematics as partial differential problems (PDP). Any
such problem is defined by a set of partial differential equations and by
proper boundary and initial conditions.

Determining the solution to a problem of this kind is rather difficult;
it is usually arrived at solely by approximate methods – discrete or
analytical-numerical. The difficulties stem from the following properties of
the problem:

1. The corresponding set of equations is non-linear; it contains many
unknown functions, and up to four independent variables.

2. The solution is sensitive to boundary conditions.

3. The domain of the solution, representing a natural body of water,
such as an ocean, a lake, a sea, a bay or a lagoon, is bounded as a rule
by a geometrically complex shoreline, and by perhaps not quite so
complex a bottom.
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The considerations of the present paper will be confined to plane
problems, in which any functionH describing a property of flow may depend
on three real arguments:

H = H(x, y, t), (1)

where x, y, t denote two spatial variables and time, respectively.
The domain of the solution will be regarded as a plane figure bounded

by a closed, non-intersecting shoreline.
This domain may contain islands, in which case it is called multiply

connected; otherwise it is simply connected. Only domains of the latter
kind will be considered in this paper. It should be stressed, however, that
multiply connected domains are also covered by existing theory, algorithms
and computer programs (Prosnak & Klonowska 1996a), and extension of
this research to such domains is perfectly plausible.

The Vistula Lagoon (Fig. 1) may serve as an example of a simply
connected domain.

y

0.5ñ0.5

x

Fig. 1. The Vistula Lagoon

It should be understood that the inlets and the outlets to and from
the Lagoon have been disregarded in the Figure, and its chord, situated
in the x, y – system of rectangular coordinates, coincides with the segment
(−0.5, +0.5) of the axis of the abscissae. Furthermore, the shoreline of the
Lagoon is defined by a set of discrete points taken from measurements and
extended, if necessary, by interpolated ones.

Such a true shoreline appears rather rarely in PDPs of the kind
mentioned previously. On the contrary, especially when a finite difference
method is applied as a means of arriving at a solution, the true shoreline
is replaced by a ‘staircase of grid points’. This is the case not only in
older papers (see e.g. Catewicz & Jankowski 1983, p. 228), but also in
relatively recent ones (e.g. Lin & Chandler-Wilde 1996, Fig. 5). The evident
inaccuracy of the boundary must result in defective boundary conditions
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and, inevitably, distort the solution of the problem as a whole. (The
inaccurate solution may still be of value for some practical applications,
but this is another question which will not be taken up in this paper.)

The obvious remedy, already widely applied in other topics of Fluid
Mechanics (see Prosnak & Klonowska 1996a, b, Schinzinger & Laura
1991), lies in the various but exact, transformations of the PDP’s under
consideration. In the present paper, transformation of the space variables
will be applied. This leads to the replacement of the given domain of the
solution by an auxiliary, canonical one, which has a regular boundary and
is exemplified by a disc or a square.

The transformation of the original domain of the solution, which is
located in the x, y-plane, onto an auxiliary one located in the ξ, η-plane,
is represented by a system of two functions:

ξ = ξ(x, y); η = η(x, y). (2)

Solving (2) with respect to x, y yields an equivalent system:

x = x(ξ, η); y = y(ξ, η), (3)

which, inversely, transforms the auxiliary domain onto the original one.
The main benefits arising out of the introduction of the auxiliary domain

of the solution can be summarized as follows:

• the regular shape of this domain usually permits the application of
analytical-numerical methods, in particular of spectral or pseudo-
spectral ones, which yields a more economical description of the
solution, and sometimes delivers the solution in closed form,

• the regular shape of the lines bounding this domain enables one to
impose the boundary conditions very accurately,

• the transformation is universal: it does not depend on a particular
PDP; it may serve a multitude of such problems posed in the same
original domain,

• if the auxiliary domain of the solution is represented by a rectangle,
the use of purely discrete methods may turn out to be easier.

There is a particular kind of such coordinate transformation called
conformal mapping. It is widely used for solving the PDP’s occurring
in various fields of science and technology (for examples, see Prosnak
& Klonowska 1996a, b, Schinzinger & Laura 1991). Oceanology seems to
represent an exception in this respect, the reason for this undoubtedly
stemming from the already mentioned geometrical complexity of the shore
line, and of the domain as a whole.

The aims of the present paper are to recall the useful (and beautiful)
properties of conformal mapping, and to demonstrate – using the example of
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the Vistula Lagoon – that the difficulties of applying this transformation in
practice can be surmounted. This finally leads to the sought-after canonical
domain in the form of a system of five discs.

No hydrodynamical problem as such will be considered in the paper.
It is intended to do so in a separate publication, using the results of the
conformal transformation set out in Section 6.

2. Conformal mapping and some of its properties

Definitions. Conformal mapping can be regarded as a special form of
transformation of a plane domain onto another one, i.e. as a special form of
transforming functions (2) and (3). It makes use of complex variables:

z = x+ iy; ζ = ξ + iη; i =
√
−1, (4)

which denote points on the complex planes ©z and ©ζ , respectively, shown
in Fig. 2.

zy

x
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Dz
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h z
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Dz

Fig. 2. Conformal mapping of a disc onto a given domain: image and counter image

By virtue of (4) the set of two real functions (3) can be rewritten as

z = x(ξ, η) + iy(ξ, η) = f(ζ), (5)

the symbol ζ denoting the complex argument, and z the complex function.
This function is called holomorphic if its real and imaginary parts satisfy
the Cauchy-Riemann conditions:

∂x

∂ξ
=

∂y

∂η
;

∂x

∂η
= −∂y

∂ξ
. (6)

If a holomorphic function (5) is univalent in a domain Dζ located
in the ζ-plane, and exemplified by the disc in Fig. 2, then the function
transforms the whole disc together with its bounding circle onto a domain
Dz located in the z-plane, and bounded by a Jordan curve Jz (Fig. 2). Such
a transformation performed by a holomorphic function is called conformal.
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The Jordan curve is defined as a closed, non-intersecting line, consisting
of a finite number of regular segments. Such a curve with a fixed direction
is referred to as the contour.

The domains Dz and Dζ are called the image and the counter-image,
respectively, if the transformation is defined by the function (5).

An example, concerning the Joukowski function (Prosnak & Klonowska
1996a)

z = ζ +
c2

ζ
; c− real, (7)

is given in Fig. 3. The function transforms the infinite exterior of the
circle shown in this Figure onto such an exterior of the contour possessing
a singular point at

x = 2c > 0,

the shape and position of this image being defined entirely by function (7),
as well as by the radius and center of the circle. By changing the data
concerning the circle, one obtains quite different contours. Some typical
Joukowski contours, as well as examples of given functions different from
(7), can be found in Prosnak & Klonowska (1996a).

c

z�

2c

Fig. 3. Conformal mapping of the exterior of a circle onto the exterior of
a Joukowski profile

Existence and univalence. In the example just presented, the
counter-image Dζ and the mapping function (5) – in the particular form
(7) – are given, but the boundary line of the image Dz is not known in
advance and has to be evaluated. A much more interesting and, perhaps,
even surprising property of the theory of conformal mapping corresponds
to the case when, inversely, both the domains Dz and Dζ are given, but the
mapping function is sought.

In this paper considerations dealing with such a problem will be confined
to simply connected domains, both finite and infinite. Moreover, although
the two Jordan curves bounding the respective domains can be quite
arbitrary, one of them will always be assumed to be a circle. Such a domain is
usually referred to as circular, no matter whether it is finite or infinite.
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Under these conditions it can be said that a holomorphic function

z = fin(ζ), (8)

conformally transforming a disc located in the ζ-plane onto an arbitrary
finite domain located in the z-plane and bounded by a Jordan curve, always
exists, and is univalent.

The analogous theorem concerning infinite, simply connected domains
is true too. This states that a holomorphic function

z = fex(ζ), (9)

conformally mapping the closed, infinite exterior of a circle onto the closed,
infinite exterior of a given arbitrary Jordan curve, always exists, and is
univalent.

General forms of the standard mapping functions (8) and (9)

Any holomorphic function defined in a disc can be developed into a power
series under certain assumptions relating to the properties of this function.
This theorem also applies to the mapping function (8), which can therefore
be presented as

z = fin(ζ) =
∞∑
n=0

Cn

(
ζ

A

)n
; |ζ |∈ [0, A], (10)

the series converging within the indicated interval, i.e. within the whole,
closed disc. The symbol A denotes the radius of the circle, and the symbols

Cn; n = 0, 1, 2, ... (11)

stand for complex coefficients of the series. If A=1, then the circle is called
the unit circle.

Similarly, a holomorphic function defined in the closed, simply con-
nected, infinite exterior of the circle, can be developed into a Laurent’s
series which, under certain assumptions relating to the function, can be
written as

z = fex(ζ) = G−1ζ +
∞∑
n=0

Gn

(
a

ζ

)n
; ζ ∈ [aeiθ,∞]; θ ∈ [0, 2π], (12)

where, again, the series converges within the indicated, infinite, closed
domain, and the symbol a denotes the radius of the circle. The symbols

Gn; n = −1, 0, 1, 2, ... (13)

denote complex coefficients of the series (12).
The functions (10) and (12) will be referred to as standard ones.
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3. Effective conformal mapping – two kinds of
decomposition

From the considerations of the previous Section one could gain the
impression that the task of determining the conformal mapping of a disc
onto a finite domain bounded by a given contour is easy, as it reduces
simply to the problem of determining the complex coefficients (11) of the
series (10). In the case of infinite domains the same task seems to reduce
to the problem of determining the coefficients (13) of the standard function
(12).

Unfortunately, neither problem is at all ‘easy’. On the contrary, they are
both rather difficult to solve, for the following reasons:

1. Formulae for evaluating coefficients (11) and (13) in the case of
arbitrary contours do not exist.

2. The algorithms for determining these coefficients are non-linear, and
always involve an iterative process whose convergence has not been
proved theoretically.

3. The accuracy of conformal mapping, understood as a suitably defined
‘difference’ between the given contour and the one described by
the series (10) or (12), depends principally on the number of terms
retained after the unavoidable truncations. This number usually has
to be rather large – from several hundred to several thousand – which
may cause computational difficulties.

Considering the strategy of solving the problem of conformal mapping
as a whole, one should also keep in mind some general factors that influence
the number of terms to be retained in the series (10) or (12).

The first of these factors is the type of domain. Namely, the power
series (10) is rather slowly convergent on the circle bounding the domain,
so that a somewhat larger number of terms is necessary in comparison with
the series (12) under comparable circumstances.

A second important factor is the shape of the given contour. In
order to get the ‘feeling’ of this property, one should consider the trivial
case when the given contour is represented by a circle. Obviously, each one
of the corresponding series – (11) or (13) – would in this case reduce solely
to two terms: the constant and the linear one. The more the given contour
differs from the circle, the more terms are needed.

It can be concluded that the most natural idea of describing a sought-after
conformal mapping of a given domain by means of just one of the series
(10) or (12) may turn out to be impracticable – not for theoretical,
but for computational reasons. In particular, we are convinced that
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the Vistula Lagoon (Fig. 1) belongs to such ‘too difficult’ cases, intractable
in a single step.

So, in order to surmount the difficulties characteristic of the one-step
approach, the idea of decomposing the conformal mapping under conside-
ration has been introduced instead. Two kinds of decomposition will be
applied.

Decomposition of the given domain consists in dividing it into
a number of subdomains. The need for such decomposition arises particu-
larly when the domain is elongated. This kind of decomposition is illustrated
in Fig. 4., which shows the Vistula Lagoon divided into five subdomains
by means of four rectilinear, parallel and equidistant segments denoted by
Arabic digits. Every subdomain resembles a disc more nearly than the whole
domain does.

V

1
2

34

IV

III
II

I

Fig. 4. Decomposition of the Vistula Lagoon into five subdomains

Decomposition of the conformal mapping process means that the
domain (or subdomain) under consideration is transformed onto a circular
one gradually, step-wise, the boundary lines of the consecutive, intermediate
domains tending more and more towards a circle. This is illustrated in Fig. 5,
which refers to a four-step transformation.

It starts with the ‘original’ domain (a in Fig. 5), which is located in the
complex z-plane. This domain is transformed by means of the function

λ1 = F1(z) (14.1)

onto an intermediate one, denoted (b) in Fig. 5, and located in the λ1-plane.
The function (14.1) is usually adopted in the form of the Schwarz-Christoffel
function, which will be discussed in the next Section.

Now, because conformal mapping of infinite domains is ‘easier’ to
execute numerically than such mapping of finite ones, the finite domain (b)
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Fig. 5. Decomposition of the conformal mapping
process into four consecutive steps

is transformed onto the infinite one, denoted (c) in Fig. 5. This is done by
means of inversion, described by the function

λ2 = F2(λ1) =
D

λ1 − λ1 ∗
, (14.2)

where D denotes a complex scaling factor, and λ1
∗ the center of inversion.

It has to lie inside domain (b).
Next, domain (c) is transformed onto the closed exterior of the circle (d)

by means of the standard function

λ3 = F3(λ2). (14.3)

The symbol a will stand for the radius of this circle (cf. (12) and Fig. 5).
It should be stressed that (14.3) represents the crucial element of the whole
set of transformations, determining its entire accuracy.

Finally, the closed exterior of the circle (d) situated in the λ3-plane is
transformed by means of the function
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ζ =
a

λ3
(14.4)

onto the unit disc (e), situated in the ζ-plane.

4. Functions representing consecutive mappings

In the present Section the most important functions realizing the
separate steps of conformal mapping applied in this work will be set out
and commented on.

The Schwarz-Christoffel function, defined by the formula

z = K0 +K1

ζ∫
ζd

N∏
n=1

(1− ζe−iθn)pndζ (15)

transforms conformally a unit disc located in the ζ-plane onto a polygon,
defined in the z-plane by means of its N vertices:

zn; n = 1, 2, ..., N (16)

(see Fig. 6).

y z h

z5

q5

z6
q6

z4

q4

z2

q2

z1

q1

z3

q3

x x

z

1

Fig. 6. Conformal mapping of a disc onto the interior of a polygon

In formula (15) the symbols K0, K1 denote complex constants, and ζd an
initial point of integration that has to be chosen within the disc:

|ζd |< 1.

The exponents pn in (15) depend on the inner angles αn of the polygon (not
indicated in Fig. 6):

pn =
αn
π
− 1; n = 1, 2, ..., N. (17)

The remaining exponents –

θn; n = 1, 2, ..., N (18)
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– represent counter-images of the vertices (16). They are usually referred
to as parameters of the Schwarz-Christoffel function. The values of the
parameters corresponding to an arbitrary polygon are not known in advance.
In the case of a regular one, they are distributed equidistantly on the circle
bounding the disc. For instance, for a square they can be assumed as given
in Table 1.

Table 1. Vertices of a square, and the parameters of the corresponding
Schwarz-Christoffel function

n 1 2 3 4

xn 0.5 –0.5 –0.5 0.5
yn 0.5 0.5 –0.5 –0.5
θn

π
2 π 3

2π 0

error −5.6× 10−17 −1.1× 10−16 −5.6× 10−17 0

The problem of determining the parameters (18) for an arbitrary polygon
is non-linear and not easy to solve, especially in the case when the contour
is elongated, indented, and has a large number of vertices. However, if
this number is smaller than 10, then the computer program developed by
Prosnak & Klonowska (1996a) delivers very accurate solutions, the accuracy
being defined as the maximum distance between a given vertex zn and its
image delivered by the function (15). For a square with sides equal to 1, the
program yields the errors set out in Table 1.

According to the property mentioned before, the function (15) can be
developed into a power series:

z =
K∑
k=0

Bkζ
k, (19.1)

where the coefficients depend explicitly on constants of the function
– especially on the parameters – and can be evaluated very accurately
for any number K of the terms of the series. No iterative process is
involved in their determination. Hence, it should be remembered that the
series (19.1) transforms rather accurately the unit circle shown in Fig. 6
onto the corresponding polygon, provided that a sufficiently large number
K is adopted. In the case of the square, an accuracy of the order of 0.0001
can be achieved only for K ≥ 4000 (see Filchakov 1964, p. 499).

In the remainder of the present paper the ‘provenience’ of the series
(19.1) will be ignored, and the series will be regarded merely as an exact
function that transforms the unit circle onto a regular contour, very similar
to the given polygon, but possessing rounded-off vertices.
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The inverse of the function (19.1) can be written formally as

ζ =
K∑
k=1

B̃kz
k. (19.2)

However, in the present work the value ζ of the inverse will always be
determined numerically from (19.1), for a given value of z, with high
accuracy.

Function (14.1) can be regarded as identical with (19.2). It represents
the first step in all sets of step-wise conformal mappings, corresponding to
the five subdomains.

In all the sets of consecutive operations just mentioned, the one involving
the determination of the complex coefficients (11) of the power series (10)
for a given domain, and by means of an iterative process, has been studiously
avoided, for reasons mentioned in the previous Section (slow convergence).
Instead, the finite domain under consideration (b in Fig. 5) has been
transformed by means of function (14.2) onto an infinite one (c in Fig. 5).

The functions (14.2) and (14.4) hardly need any comment.

On the other hand, it should be recalled that the function mapping
the exterior of a circle (d in Fig. 5) onto the infinite domain bounded by
a known Jordan line, is sought in the form of the standard function (12), its
coefficients being determined in a fairly effective iterative process developed
by Prosnak & Klonowska (1996a, b). The corresponding computer program
is presented in Prosnak & Klonowska (1996a).

If necessary, the already introduced Joukowski function (7) is also
applied in our work to rectify local indentations of the contour under
consideration. An example of this kind is presented in Fig. 7. The ‘indented’
domain, located in the z-plane, is transformed together with the inscribed
Joukowski profile onto the ζ-plane by means of the inverse of the Joukowski
function (7):

ζ =
z

2
±
√(

z

2

)2
− c2. (20)

It can be easily seen in Fig. 7 that the ‘indentation’ does not appear in
the domain so transformed. Obviously, the circle on the right hand side of
Fig. 7 represents the image of the Joukowski profile obtained by means of
the function (20).
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z z

Fig. 7. Local ‘rectification’ of a contour by means of the Joukowski function

One of the existing generalisations of the Joukowski profile and of
the Joukowski function has been given by Kármán & Trefftz (1918). The
Kármán-Trefftz function can be presented in the following form:

z − 2c
z + 2c

=
(
ζ − c

ζ + c

)m
; (0 < m ≤ 2). (21)

When m = 2 the function reduces to the Joukowski one, and the angle
δ between the tangents to the profile at the cusp is zero (Fig. 7). For
increasing m the angle increases too, according to the relation

m =
2π − δ

π

between the exponent and the angle.
The function (20) transforms the circle into a Kármán-Trefftz profile,

together with corresponding exteriors. An example is shown in Fig. 8, where
the contour resembles a figure of eight, and the angle δ = 315◦.

z z

Fig. 8. Local ‘rectification’ of a contour by means of the Kármán-Trefftz function
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The function is a rather powerful tool for the local rectification of
contours possessing edge-like indentations.

The (almost) complete collection of ‘partial’ mapping functions used in
the present work can therefore be listed as follows:

• the Schwarz-Christoffel function (15),

• the truncated power series (19.1), representing the development of the
Schwarz-Christoffel function,

• the inverse (19.2) of the function (19.1), computed numerically as the
solution of (19.1) with respect to ζ for given z,

• the function (14.2), representing the so-called inversion,

• the standard function (12), conformally mapping the infinite exterior
of the circle of radius a onto the infinite exterior of a given contour,

• the Joukowski function (7), and the inverse (20) of this function,

• the Kármán-Trefftz function (21), and the inverse of this function.

Auxiliary operations, such as scaling, shifting and rotating a contour,
have been omitted from the list, which can therefore be regarded as almost
complete.

The functions (15) and (19) can be considered fairly exact. Their
accuracy depends solely on that of the parameters (18), which is usually
very high, as will be seen in Section 6.

In contrast, the functions (14.2), (7), (20), and (21) are exact: they
contain exclusively exact constants.

On the other hand, the standard mapping function (12) must be
considered approximate. It is truncated and contains coefficients obtained
by the use of the iterative process, their accuracy depending on the number
of retained terms and on the shape of the transformed domain. Hence, the
accuracy of the whole step-wise conformal mapping depends mostly on the
accuracy of the determination of the coefficients (13) of series (12). This
property was already mentioned in Section 3.

5. Data for the conformal mapping of the Vistula Lagoon

The original data, which describe the shape of the Vistula Lagoon
and are assumed to be the basis of the computations performed within
the framework of the present paper, consist of a list of the rectangular
coordinates of 881 discrete points on the contour of the Lagoon (Fig. 1).
The list is stored at the Institute of Oceanology of the Polish Academy of
Sciences under the supervision of the second author of this paper.

Following the (already introduced) decomposition of the domain, and
the subsequent shifting of the subdomains thus obtained along the axis of
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the abscissae, they can be presented separately, as shown in Fig. 9.

V IV

III

II

I

4 4 3 3

2 2 1 1

Fig. 9. The five subdomains: the result of the decomposition of the Vistula Lagoon

The four rectilinear segments separating the subdomains are defined by
the following numbers of discrete points:

N1 = 28; N2 = 42; N3 = 28; N4 = 25. (22)

Consequently, the total numbers of points defining consecutive subdomains
are

NI = 244; NII = 279; NIII = 225; NIV = 186; NV = 185. (23)

The corresponding five lists of coordinates are also stored at IO PAN.

6. Results of conformal mapping of the Vistula Lagoon

The results of conformal mapping of the Vistula Lagoon will be presented
in this Section in a natural way, following on from the decomposition of this
domain into five subdomains, each of which can be treated independently.
Hence, the presentation will refer consecutively to each one of these
subdomains, and within the framework of every ‘sub-presentation’ the
sequence of partial conformal mappings will be produced. The most decisive
terms of the sequence will be shown in graphical form. In general, no
numerical results will be included in the presentation, except the parameters
of the Schwarz-Christoffel function.

The structure of most sequences resembles rather closely the general
scheme shown in Fig. 5. However, one more operation occurs in the
sequences relevant to the subdomains I and II.

Subdomain No. I

This subdomain is shown in Fig. 10. Its boundary is denoted by Cz,
and the symbol E refers to the octagon approximating this boundary.
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z

x

yE

Cz

Az

Fig. 10. The octagon and the quasi-octagon approximating the boundary of
subdomain I

The parameters of the Schwarz-Christoffel function corresponding to the
octagon, which have been computed by means of an advanced version of the
computer program by Prosnak & Klonowska (1996a), are set out in Table 2.

Besides the coordinates of the vertices and the above-mentioned parame-
ters, the Table contains errors referring to the lengths of the octagon’s sides
and not to positions of the vertices directly.

The third contour in Fig. 10, denoted by Az, represents the image of the
unit circle by means of the series (19.1), which contains K = 500 terms.

This unit circle, shown in Fig. 11 and denoted by Aλ, represents the
image of the contour Az in the λ1-plane computed by means of the inverse
(19.2) of the function (19.1).

Al

Cl

l1

Fig. 11. Counter - image of the
quasi-octagon and of the boundary
of subdomain I shown in Fig. 10

On the other hand, the contour Cz is transformed by means of the same
function (19.2) into the contour bounding the finite domain in Fig. 11.
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Table 2. Vertices of the octagon approximating the boundary of subdomain I (Fig. 10),
and the parameters of the corresponding Schwarz-Christoffel function

n 1 2 3 4 5 6 7 8

xn 0.08 –0.067 –0.104 –0.104 –0.039 0.105 0.105 0.073
yn 0.022 0.076 0.075 –0.011 –0.025 –0.025 0.00 0.013
θn 3.8136 141.4944 142.9352 149.1458 163.4278 350.217 351.1182 0.00
error −2.2× 10−4 −3.6× 10−3 −7.4× 10−3 −1.0× 10−3 −5.8× 10−3 −7.1× 10−3 −7.5× 10−4 0.00

Table 3. Vertices of the octagon approximating the boundary of the transformed subdomain I (Fig. 12),
and the parameters of the Schwarz-Christoffel function

n 1 2 3 4 5 6 7 8

σ
[1]
n 1.08 0.10 –0.90 –0.90 0.00 0.53 1.05 0.97

τ
[1]
n 0.10 0.77 0.77 –0.08 –0.10 –0.30 –0.17 0.00

θ̃n 1.3928 232.1624 270.4352 274.8862 305.2365 347.9145 358.0333 0.00

error −9.4× 10−4 −6.7× 10−3 −2.7× 10−3 −3.5× 10−3 1.7× 10−3 −1.4× 10−3 −2.6× 10−3 0.00
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It can be seen that the domain in Fig. 11 needs at least one more trans-
formation in order to approach the unit disc. Again, the Schwarz-Christoffel
function has been used as the means for the additional transformation.
Hence, in Fig. 12 the domain is again shown in the λ1-plane, but this time
it appears together with its ‘own’ approximation in the form of an octagon,
and with the quasi-octagon representing the image of the unit circle by
means of the series (19.1), where K = 500.

l1

Fig. 12. The octagon and the quasi-octagon approximating the boundary of the
intermediate domain shown in Fig. 11

The coordinates of the octagon’s vertices and the parameters of the
corresponding Schwarz-Christoffel function are given in Table 3.

By transforming the boundary shown in Fig. 12 by means of (19.2), one
obtains the contour shown in Fig. 13 in the λ2-plane; the unit circle denotes
the image of the corresponding quasi-octagon. The domain in Fig. 13 does
indeed resemble the unit disc much more than the one shown in Fig. 11.

l2

Fig. 13. Counter - image of the
quasi-octagon and of the boundary
shown in Fig. 12
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The next step consists in transforming the finite domain (Fig. 13) onto
an infinite one (Fig. 14) by means of a function similar to (14.2) and
representing inversion. The function is in fact identical with (14.2), but
contains differently denoted coefficients. The result is shown in Fig. 14.

l3

Fig. 14. Inversion of the finite
domain shown in Fig. 13 onto an
infinite one

Further, function (12) is applied, which transforms the infinite exterior
of a circle onto the infinite exterior of the contour visible in Fig. 14. The
relevant computer program (Prosnak & Klonowska 1996a) yields

aI = 0.46744; δI = 0.00469; (24.1)

at

NI = 198; II = 1000, (24.2)

where

aI – radius of the circle,

δI – maximum error of the mapping,

NI – number of terms in the series (12),

II – number of nodes occurring in the iterative process for the contour
shown in Fig. 14; the meaning of the nodes is explained in Prosnak
& Klonowska (1996a).

The indices refer to the number of the subdomain.

The error is defined as the distance between a given point on the
boundary in Fig. 14 and its image, calculated by means of function (12),
which contains coefficients (13), supplied by the above-mentioned computer
program.
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The infinite circular domain, such as appears in Fig. 5d, is finally
transformed by means of inversion (14.4) onto the unit disc, which represents
the final result of the step-wise transformation of subdomain No. I. The two
figures analogous to Figs. 5d, 5e are omitted for the sake of brevity.

Subdomain No. II

The step-wise conformal mapping of subdomain No. II consists of exactly
the same elements as in the previous case.

The subdomain under consideration is shown in Fig. 15 together with
the nonagon E1

II approximating the boundary line C1
II. The quasi-nonagon,

obtained as a map of the unit circle by means of series (19.1), with
K = 400, is also visible in Fig. 15.

z

x

y

EII
1

CII
1

Fig. 15. The nonagon and the quasi-nonagon approximating the boundary of
subdomain II

Table 4 gives the vertices and parameters of the Schwarz-Christoffel
function.

By using the inverse (19.2) of function (19.1), one can transform Fig. 15
onto another one, shown in Fig. 16, where the unit circle represents the
image of the quasi-nonagon. The domain turns out to be rather irregular,
with deep indentations and several angular points. Therefore, in order
to remove the irregularities, it has to be transformed again by means of
the Schwarz-Christoffel function. Hence, as before, the domain is shown
again in Fig. 17, together with its ‘own’ nonagon and quasi-nonagon.
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Table 4. Vertices of the nonagon approximating the boundary of subdomain II (Fig. 15),
and the parameters of the corresponding Schwarz-Christoffel function

n 1 2 3 4 5 6 7 8 9

xn 0.040 0.040 –0.010 –0.040 –0.106 –0.106 0.010 0.106 0.106
yn 0.070 0.140 0.170 0.170 0.085 –0.045 –0.040 –0.010 0.075
θn 32.7457 76.0787 85.0258 88.1418 120.7356 181.9710 279.8812 346.6041 0.00
error −1.2× 10−6 −3.1× 10−6 −9.4× 10−6 3.9× 10−6 −2.6× 10−6 −2.4× 10−6 −5.7× 10−7 3.7× 10−7 0.00

Table 5. Vertices of the nonagon approximating the boundary of the transformed subdomain II (Fig. 17),
and the parameters of the Schwarz-Christoffel function

n 1 2 3 4 5 6 7 8 9

σ
[1]
n 0.85 0.43 0.28 0.13 –0.92 –0.27 –0.62 0.00 0.85

τ
[1]
n 0.62 0.94 0.76 1.10 0.62 0.27 –0.50 –1.15 –0.74

θ̃n 65.6015 83.9963 99.2273 122.4778 152.360 201.8292 325.0414 343.0924 0.00

error −1.0× 10−5 −1.4× 10−5 −1.3× 10−5 −5.3× 10−6 7.2× 10−6 1.1× 10−5 −2.9× 10−6 −2.9× 10−6 0.00
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l1

EII
2

CII
2

l1

Fig. 16. Counter - image of the quasi-
nonagon and of the boundary of sub-
domain II shown in Fig. 15

Fig. 17. The nonagon and the quasi-
nonagon approximating the boundary
of the intermediate domain shown
in Fig. 16

The corresponding vertices and parameters of the Schwarz-Christoffel
function are set out in Table 5.

The result of transforming Fig. 17 by means of the inverse (19.2) of the
function (19.1) yields the finite domain shown in Fig. 18.

l2

Fig. 18. Counter - image of the quasi-
nonagon and of the boundary shown
in Fig. 17

This domain is now transformed onto an infinite one, the resulting figure
(similar to Fig. 14), however, being omitted for the sake of conciseness.
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In this case the computer program (Prosnak & Klonowska 1996a) yields

aII = 0.41407; δII = 0.00748; (25.1)

at

NII = 198; III = 1000; (25.2)

the meanings of these four symbols has already been explained.
Pictures of the infinite and the finite circular domains (cf. Fig. 5) are

also omitted here. The corresponding partial mapping functions do not need
any comment either.

Subdomain No. III

The transformation of this subdomain is even simpler than that of
the two previous ones, because only single mapping by means of the
Schwarz-Christoffel function turns out to be necessary. Consequently, the
structure of the step-wise transformation is here entirely identical with the
general scheme shown in Fig. 5.

Subdomain No. III is shown in Fig. 19, together with the octagon
approximating its boundary CIII, and with the quasi-octagon representing
the image of the unit circle obtained by means of series (19.1) with K=500.

zy

x

CIII

Fig. 19. The octagon and the quasi-octagon approximating the boundary of
subdomain III

The coordinates of the octagon’s vertices shown in Fig. 19, and the
parameters of the corresponding Schwarz-Christoffel function can be found
in Table 6.
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Table 6. Vertices of the octagon approximating the boundary of subdomain III
(Fig. 19), and the parametrs of the corresponding Schwarz-Christoffel function

n 1 2 3 4

xn –0.0113 –0.0996 –0.0847 –0.0684
yn 0.1046 0.0875 0.0593 0.0536
θn 122.0899 154.1781 157.1835 167.5624
error 4.7× 10−8 1.9× 10−5 2.1× 10−5 6.7× 10−6

n 5 6 7 8

xn –0.0701 –0.0246 0.1039 0.0947
yn 0.0227 –0.1105 –0.0883 –0.0361
θn 225.7115 346.3073 357.4425 0.00
error 4.5× 10−7 2.7× 10−6 −1.4× 10−6 −2.2× 10−16

The image of subdomain III obtained by means of (19.2) appears as
a finite domain in Fig. 20. This domain is sufficiently regular and can be
transformed directly onto an infinite domain – see Fig. 5.

l1

Fig. 20. Counter - image of the
quasi-octagon and of the boundary
of subdomain III shown in Fig. 19

As before, the standard function (12) is applied in order to map the
domain thus obtained onto an infinite circular one, the computer program
(Prosnak & Klonowska 1996a) yielding the following results:

aIII = 0.43354; δIII = 0.00705; (26.1)

at

NIII = 198; IIII = 1000. (26.2)
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The image of Fig. 20 representing the infinite domain (see Fig. 5d), as
well as the circular domains, have been omitted in order to save space.

Subdomain No. IV

This subdomain is shown in Fig. 21 in the same manner as the three
previous ones. It contains the quadrilateral, approximating boundary of
the subdomain; it also contains the quasi-quadrilateral. This last curve
represents the image of the unit circle obtained by means of the inverse
(19.2) of series (19.1), where K = 400.

zy

x

EIV

CIV

Fig. 21. The quadrilateral and the quasi-quadrilateral approximating the boundary
of subdomain IV

The coordinates of the vertices and parameters of the corresponding
Schwarz-Christoffel function are set out in Table 7.

Table 7. Vertices of the quadrilateral approximating the boundary of subdomain
IV (Fig. 21), and the parameters of the corresponding Schwarz-Christoffel
function

n 1 2 3 4

xn 0.105 –0.105 –0.105 0.105
yn 0.010 –0.014 –0.100 –0.115
θn 17.5681 240.9084 256.6475 0.00
error −1.2× 10−10 −7.8× 10−12 −1.0× 10−10 0.00

As before, the counter-image of the quasi-quadrilateral and of the
boundary of the intermediate finite domain are shown in Fig. 22.
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l1

Fig. 22. Counter - image of the
quasi - quadrilateral and of the
boundary of subdomain IV shown
in Fig. 21

This result is transformed again by means of the function (14.2), yielding
the infinite domain shown in Fig. 23.

l2

Fig. 23. Inversion of the finite
domain shown in Fig. 22 onto
an infinite one

The results of the conformal mapping of this last domain onto the infi-
nite, circular one provided by the computer program (Prosnak & Klonowska
1996a) contain

aIV = 0.46050; δIV = 0.00695; (27.1)

at

NIV = 180; IIV = 1000. (27.2)

As previously, the auxiliary transformations of the infinite domain, such
as rotation, shifting, translating, as well as the use of the Joukowski function,
which have been applied to render mapping by means of the standard
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function (12) as effective as possible, are omitted in their entirety. Of course,
they have been saved in the relevant files, which contain the full numerical
results of every set consisting of the step-wise conformal mappings. Pictures
of the two corresponding circular domains are again omitted.

Subdomain No. V

As in the previous case, the fundamental results are contained in three
Figures and one numerical Table.

Subdomain V, together with the approximating pentagon and quasi-pen-
tagon, is shown in Fig. 24.

y

x

EV

CV

z

Fig. 24. The pentagon and the quasi-pentagon approximating the boundary of
subdomain V

The coordinates of the pentagon’s vertices as well as the parameters of
the corresponding Schwarz-Christoffel function are given in Table 8.

Table 8. Vertices of the pantagon approximating the boundary of subdomain V
(Fig. 24), and the parameters of the corresponding Schwarz-Christoffel function

n 1 2 3 4 5

xn –0.105 –0.090 0.020 0.105 0.105
yn 0.007 –0.077 –0.127 –0.096 –0.019
θn 134.4787 158.1882 314.4368 349.8031 0.00
error −7.5× 10−5 −6.5× 10−5 −3.4× 10−5 9.2× 10−6 0.00

The image of subdomain V, obtained by means of (19.2), is shown in
Fig. 25. The number of terms in (19.1) K = 400.
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l1 l2

Fig. 25. Counter - image of the
quasi-pentagon and of the boundary
of subdomain V shown in Fig. 24

Fig. 26. Inversion of the finite domain
shown in Fig. 25 onto an infinite one

Finally, the result of transforming the last-mentioned Figure by means
of (14.2) is shown in Fig. 26.

The infinite domain so obtained is bounded by an insufficiently regular
contour. Therefore, it had to be rectified locally by means of the Joukowski
function applied twice. Moreover, theKármán-Trefftz function (21) has been
used for the same purpose. Being purely auxiliary, these operations can be
safely omitted here without any loss of clarity.

The concluding comment can be expressed as follows.

It has been shown in this Section that every single subdomain of the
Vistula Lagoon (Fig. 9) can be transformed step-wise onto a unit disc.
Therefore, the set of five such discs (Fig. 27) represents the sought-after
computational or canonical domain of this Lagoon. This domain is shown in
Fig. 27, the images of the subdomains being denoted by Roman numerals.
The arcs marked with Arabic digits represent images of the rectilinear
segments shown in Fig. 9 and are denoted in the same manner. These
arcs are very important: they represent connections between consecutive
discs, and appropriate continuity conditions have to be imposed on them if
a partial differential problem is to be formulated in the final computational
domain.

The unit circles in Fig. 27 are denoted by the dashed lines. The
continuous ones refer to the final results of the corresponding sets of the
consecutive mappings under consideration. The discrepancy between these
two lines gives some idea of the accuracy of the whole mapping process.
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Fig. 27. The final result of all step-wise conformal mappings: a set of five unit
discs

7. Conclusions and comments

It has been demonstrated that conformal mapping of simply connected
domains, which has theoretically ensured existence and univalence, can be
determined effectively even in the case of such a ‘computationally difficult’
domain as the Vistula Lagoon. The success is undoubtedly founded on the
application of two decompositions: that of the domain to be transformed,
and that of a single mapping into a set of simple ones.

The determination of such conformal mapping is nevertheless a task
which requires intimate knowledge of the subject, long experience, and
– quite simply – a lot of patience. The last of these virtues is particularly
valuable during the gradual transformation of an infinite domain, by
means of local rectifications, onto a sufficiently regular one that can be
easily and accurately transformed onto a circular domain by means of the
standard mapping function (12). Newertheless, all this is usually rather
time-consuming and tedious.

However, the universality of conformal mapping should be emphasized
as one of the benefits of the transformation. Namely, the results concerning
a particular domain can be used to solve any partial differential problem
formulated in this domain as the domain of solution. This is one of the rea-
sons why we have refrained from formulating a particular hydrodynamical
problem.



Transformation of the Vistula Lagoon onto a canonical domain 199

The full results obtained during this research are stored at the Institute
of Oceanology of the Polish Academy of Sciences. They have been carefully
selected in order to make this paper as concise as possible. On the other
hand, however, we have kept in mind the traditional rule that published
results must be suitable for checking by the interested reader. We hope that
the graphical results contained in Figs. 10 to 27, as well as the numerical
ones in Tables 2 to 8, still satisfy this condition. However, we believe that
any further truncation of the results will not guarantee such a possibility.

The application of these results to the solution of the partial differential
problems occurring in Oceanology seems to be rather promising. In par-
ticular, the transformation of independent variables by means of conformal
mapping, often feared as being complicated, is in fact rather easy. Ready (or
almost ready) formulae can be taken from Prosnak & Klonowska (1996a).

Just one possible extension of this work should be mentioned.
It consists in taking into account multiply connected domains, de-

fined in Section 1 rather informally as ‘domains with islands’. Suitable
theorems on the existence and univalence of the mapping functions,
analogous to (10) and (12), have also been derived by Koebe. There also
exist corresponding computer programs (Prosnak & Klonowska 1996a).
An example concerning a ‘lake’ with three ‘islands’, transformed onto
a multiply connected rectangle, can also be found in Prosnak & Klonowska
(1996a).

Finally, it should be mentioned that applying the decomposition of
multiply connected domains would probably always allow one to deal solely
with simply connected subdomains.
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