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A system for estimating a coast’s vulnerability to oil spills is presented, based on geomorphological maps and
environmental data collected in the Svalbard intertidal. Since this European Arctic archipelago is nearly undisturbed and
presents a ¢ natural environment ’, its protection calls for a more detailed approach. As many as 19 factors were selected
as important for oil spill assessment in the littoral. All factors have been grouped into different subject categories (physical
parameters and biological parameters) and a different rank of importance was given for each factor (principal, important,
secondary). Selected coast units may be described with regard to sensitivity to the oil spill by the index of vulnerability
counted in each of the two categories. The western (Atlantic) coast has been described as more vulnerable when
compared to eastern (Arctic) coasts of the archipelago. The physical parameters and biological parameters indices were
often contradictory when vulnerable biota (e.g. rich crustacean assemblages) were connected with relative resistance to

the oil spill physical environment (exposed stony beaches).
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Introduction

The Svalbard archipelago is the largest European
undisturbed wilderness, with an extensive coastline
exceeding 3000 km in length. Despite its high latitude
position, it is not isolated from European contami-
nants distributed through the sea currents and air
masses (Rey & Stonehouse, 1982; Hansen et al.,
1996). More direct, local threats are from the poten-
tial oil grounds recently approved for exploitation in
Northern Norwegian and Barents Seas, in the vicinity
of Svalbard (Borresen et al., 1988; Hansson et al.,
1990).

The first, descriptive, part of the project has been
published previously (Weslawski et al., 1993;
Szymelfenig ez al., 1995). The second, conceptual,
part of the work was done to design the model
describing the vulnerability of the investigated coasts,
and is the subject of this paper.

To define a vulnerability index, a number of factors
from different fields, which are important for littoral
oil spill assessment, have been considered. Some
authors have dealt with only one group of factors, like
coastal geomorphology (Gundlach & Hayes, 1978) or
wildlife and economy threats (Hum, 1977; Taylor,
1980; Dicks & Wright, 1989; Taylor & Parker, 1993).
On the other hand, most of the recent vulner-
ability studies described the whole complexes,
including terrestrial environments and shallow shelf
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(Lindstedt-Siwa ez al., 1983; Hansson et al., 1990;
Brekke & Hansson, 1990). The present authors
focused on the single, well-defined intertidal (littoral
zone between high and low water marks). There
have been a number of studies made on Arctic oil
spills assessment (Atlas, 1977; Malins, 1977;
Nelson-Smith, 1982; Engelhardt, 1985; Baker et al.,
1990), some based on experimental oil spills like
BIOSP in Canada (Hodgson, 1987; Sergy & Blackall,
1987), as well as the monitoring surveys after
catastrophic spills such as the Exxon Valdez in Alaska.

Study area

Svalbard is an European Arctic archipelago lying on
the border between Atlantic (boreal) and Arctic bio-
geographical provinces (Figure 1). Its western coast is
exposed to the warm, West-Spitsbergen current, while
eastern coasts are washed by the Barents Current,
carrying cold Arctic waters. At least 21 coast types
have been defined in Svalbard (Hogvard & Sollid,
1988; Weslawski ez al., 1993). The predominant habi-
tat is low gravel beaches, with scarce fauna. Sheltered
skjerra are inhabited with a high biomass Fucus com-
munity, accompanied by at least 60 invertebrate
species (Weslawski et al., 1993). Meiofauna is numeri-
cally important, reaching high values comparable with
those of temperate zones (Szymelfenig ez al., 1995).

© 1997 Academic Press Limited
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FIGURE 1. Sampling stations and squares 5 x 5 km grid in Svalbard littoral.

Methods

Marine biological data were collected during the
*Tidal Zone Project’, a co-operative event of the
Norsk Polarinstitutt and the Institute of Oceanology
PAS, in Summers 1988-1993, under the umbrella of
the AKUP project (Norwegian Ministry of Energy
and Industry Assessment Programme of Petroleum
Activities). The presented method applies to the areas
where sufficient environmental information exists.
The basis to the vulnerability assessment was the
exact-point data (180 sampling stations), as well as
the continuous observations (notes and photos)
collected along the 2000 km of surveyed shoreline
(Figure 1). For uniformity with other AKUP projects,
the grid of 336 squares of 5 x 5 km has been inserted
on the archipelago map (Figure 1). Each of the
squares has its centre geographically oriented, so that
the database may work under a GIS system. It is
important to remember that described indexes repre-
sent an averaged value for each 5 x5 km square, and
not the point-specific data.

The first problem was the transformation and gen-
eralization of the data from single sampling stations
to 25 km? squares. In many localities, contrasting
features may occur within a 5km unit. Sampling
points were chosen to represent both the most typical
and most interesting parts of the coast. For example,
in a 10 km long stretch of low, gravel beach, with a
single, small, rocky peninsula, the first sampling
station was situated on the gravel beach, the second
on the rocky outcrop. The automatic (computer)
generalization of such data would lead to mistakes.
To aggregate and to extrapolate the site-specific
information, three steps were introduced:

(1) The selection of descriptive factors in such a
way that they represent a wide, common vulnerability
category. For example, coast types noted in the
sampling stations were generalized into three
vulnerability-related categories (Table 1).

(2) The dominant substratum was classified as the
one representing the whole coast unit, e.g. the sub-
stratum of the 10 km of shoreline consisting of 9 km
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gravel beach and 1 km rocky cliffs was classified as
¢ gravel °.

(3) A given feature is of special site-specific
importance, e.g. a seal haul-out noted in particular
coast units gives the highest vulnerability class for the
whole square (5 x 5 km).

Nineteen parameters have been divided into physi-
cal (Table 1) and biological (Table 2) parameters.
Each individual parameter was qualified with regard
to its importance to the oil spill as principal, important
or secondary. The principal parameters were those
of decisive influence for the oil spill sensitivity, as
described by Gundlach and Hayes (1978). Important
parameters are more specific to the Svalbard region,
and characterize the regional sensitivity. Secondary
parameters do not influence the oil spill assessment
directly, but may have some meaning in holistic,
environmental terms. Furthermore, after allocation of
a parameter to one of the three groups of importance,
it was given the value 1, 2 or 3, meaning low, medium
or high wvulnerability, respectively. The values of
principal important and secondary parameters were
multiplied by factors of 6, 3 and 1, respectively. Such
multiplication was chosen to secure the proper
balance between principal and secondary parameters
so the highest values of secondary parameters
may influence the lowest values of principal
parameters.

The physical parameters (Table 1) characterize
the physical ability of the environment to resist the
oil spill. For example, the exposed, steep stony
beaches are less vulnerable than sheltered shores
because the oil is easily washed out by the wave
action. To calculate the physical parameters index,
the mean valued of principal and important factors
were added. The lowest possible sum is 9
(Ix6+1x3) for the least fragile coasts, and the
highest sum is 27 points (3 X 6+3 x 3) for the most
sensitive coasts.

The biological parameters (Table 2) characterize
the potential biological impact in case of oil spill. For
example, the rich fauna connected with the vegetation
on skjerra was contrasted with the low-biomass
oligotrophic beach. The first was described as the
most vulnerable, and the second was described as
the least vulnerable with regard to the potential
biological impact. The calculation of the biological
parameters index was arranged in the same way as
described for physical parameters: mean value of
principal parameters+mean value of important

parameters+mean value of secondary parameters.
The lowest value of all parameters is 10, representing
lowest biological vulnerability, the highest value is
30 points for the most fragile biota.
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TaBLE 3. The percent frequency of concurrence of coast
type with littoral assemblage type in the investigated area

Assemblage  Oligotrophic  Fucus-Balanus Gammarus
Coast type
Cliffs 10 1 0
Beaches 50 23 4
Tidal flats 6 4 2
Results

Among 336 pairs of principal parameters of the
physical and biological groups, the following inter-
relations were found. In 50% of cases, the moderately
vulnerable cliff with abrasive shelf and beaches (coast
type 2 in Table 1) was associated with the least
vulnerable oligotrophic community (assemblage type
1 in Table 2). There were no cases where the least
vulnerable coasts (cliffs) were associated with the
most vulnerable Gammarus community (Table 3).

The physical parameters index is grouped into four
classes (below 13 points, 14-18, 19-23 and 24
points). The most sensitive areas (vulnerability index
>24) are tidal flats in the innermost fjord basins, with
weak currents. There are 19 such squares (6% of the
area). The least vulnerable were exposed cliffs (both
glaciers and rocks) in areas of strong currents.
Such areas occurred in 4% of the examined squares
(Figure 2, Table 4).

The biological parameters index showed only 2% of
the area classified as most vulnerable (index >25
points). These are sheltered bays with abundant
amphipod fauna, accompanied by macrophyte assem-
blages. The least vulnerable areas were exposed
beaches with poor fauna which occupied 70% of
the investigated coastline (Figure 3, Table 4). Such
habitats occurred more often on the eastern coast,
giving a lower vulnerability to the Arctic side of the
archipelago. There was no direct correlation between
the physical parameters and the biological parameters
indices. The comparison of 336 pairs of indices gives
a regression coefficient of 0-07, indicating that the
indices describe the phenomena independently.

Discussion

It should be stressed that the method applied in this
study is quasi-objective, and other persons may give
different ranking to different factors or select the new
factors of importance. Secondly, no seasonal aspect
was directly considered. Most of the presented factors
might be observed or are valid in summer only (e.g.
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FIGURE 2. Biological parameters index.

TABLE 4. Percent share of coasts with different vulnerability indices

Physical parameters

Biological parameters

Index Number of Percent of Index Number of Percent of
range squares all squares range squares all squares
9-13 14 4 10-15 238 70
14-18 168 50 16-20 63 19
19-23 135 40 21-25 26 8
24-27 19 6 25-30 9 2

birds moulting), while others are only relevant to the
winter situation (ice). In general, factors representing
the year average have been selected, taking into con-
sideration the long-lasting persistence of oil spills in
the Arctic (Nelson-Smith, 1982). The Svalbard coasts
vulnerability as defined in the present study is gener-
ally low, similar to the Canadian Arctic, reported as an
area of low littoral vulnerability (Sergy & Blackall,
1987). On the other hand, the Arctic coasts are not
completely barren, as has been stated frequently in the

literature. There are a number of dispersed littoral
sites on Svalbard which are very rich in biodiversity
and biomass (Weslawski ez al., 1993). This is why the
present authors have designed this rather complex and
complicated model for the vulnerability assessment.
The more simple methods are better suited for
industrialized and populated areas where presence or
absence of minor ecosystem elements is of little prac-
tical meaning. In Arctic coastal environments poor in
diversity and biomass, the minor ecological elements
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FIGURE 3. Physical parameters index.

may play a more important role when compared to
temperate waters (Szymelfenig er al., 1995).

The physical and biological indices were often con-
trasting. Often the coast sensitive to the oil spill from
the physical standpoint (e.g. a sheltered inner fjord
basin at the moraine lagoon) is very insensitive from
the biological standpoint since it represents a barren,
oligotrophic site with scarce life. Both indices are high
in the tidal flats and sheltered bays of the western and
southern coast. There, the rich fauna (usually tidal
amphipods) occurs in sites of little self-cleaning
potential.

Conclusions and recommendations

During field studies, the present authors have covered
a large part of the Atlantic part of Svalbard coast,
while north and eastern coasts remained unstudied.
These areas are so different from those studied pre-
viously that they may represent some phenomena of
local importance only (such as multiyear ice deposits
with specific fauna). Other important gaps in the

estimation of Svalbards coastal vulnerability are the
coasts of large and important islands: Jan Mayen,
Bjornoya, Hopen. These should be carefully studied
for their biogeographical importance e.g. as bridges
for European coastal fauna advancing north with
climate change. Another reason for the vulnerability of
islands may be their low resettlement potential, due to
the long distance to the nearest source of tidal fauna.
The extrapolation of the existing data (and model)
to unstudied areas of north and east Svalbard is
difficult if not impossible. The reason is the lack of
some key data permitting valuation of the coastline.
The 19 factors used in the vulnerability assessment
might be grouped in three categories related to their
availability:

(1) Factors which might be read from the maps,
archival or other published sources; e.g. geomorpho-
logical type, ice cover duration and type, weathering
potential, bird moulting areas, animal haul-out
grounds.

(2) Factors which are partially available in archives,
but their verification in the field would be valuable
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(wave exposure, although it might be read from the
map that the character of the storm bar and debris on
shore shows the actual exposure of a given coast unit;
substratum, general information is available for most
of the Svalbard coastline, but the important feature
of substratum ‘ compactness ’ can be estimated only
in the field; sediment flux, partly a function of expo-
sure, substratum and coast type, but actual estimation
is by far more precise in the field; feeding ground for
birds, some key areas but by no means all are known
from the literature; water transport/currents, for some
areas, data are available but not for the whole coast-
line). .

(3) Factors which can be “evaluated only after
specific fieldwork.

The type of littoral community is mostly associated
with a given geomorphological shore type (e.g. skjerra
are usually associated with fucoids). On the other
hand, there are many localities where the coast type is
not associated with the ‘expected’ animal assem-
blage; e.g. the Edgeoya coast contains a number of
typical localities of gammarid and fucoid assemblages,
but there are only a few of them in that region. Other
factors not found on the maps are: stranded kelp
deposits; recovery potential; macrophyte cover;
amphipod density; resettlement potential; littoral
supply from sublittoral; and export to sublittoral.

The differentiation of the Svalbard archipelago,
and the existence of two climatic-hydrographic
regimes (Atlantic and Arctic), as well as a number of
separate island ecosystems (like Bjornoya), makes
data extrapolation impossible. The inter-annual varia-
bility is very pronounced in the Svalbard marine
ecosystem (Weslawski & Adamski, 1987). Such
natural climate related changes have to be taken into
account for their implications in monitoring pro-
grammes (Culliname & Whelan, 1983). The major
zoogeographical boundary runs through the South
Spitsbergen as indicated by Dunbar (1968) and
Weslawski (1994). There are no published marine
ecological data on the true Arctic coast of Svalbard,
except for faunistic notes on particular animal groups
(e.g. Amphipoda, Stephensen, 1936-40).
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